Robust functional principal components for sparse longitudinal data

Springer Science and Business Media LLC - Tập 79 Số 2 - Trang 159-188 - 2021
Graciela Boente1, Matías Salibián‐Barrera2
1Departamento de Matemáticas and Instituto de Cálculo, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
2Department of Statistics, Faculty of Science, University of British Columbia, Vancouver, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bali, J.L., Boente, G.: Principal points and elliptical distributions from the multivariate setting to the functional case. Stat. Prob. Lett. 79, 1858–1865 (2009)

Bali, J.L., Boente, G., Tyler, D., Wang, J.L.: Robust functional principal components: a projection-pursuit approach. Ann. Stat. 39, 2852–2882 (2011)

Billor, N., Hadi, A., Velleman, P.: BACON: blocked adaptive computationally efficient outlier nominators. Comput. Stat. Data Anal. 34, 279–298 (2000)

Boente, G., Fraiman, R.: Robust nonparametric regression estimation. J. Multivar. Anal. 29, 180–198 (1989)

Boente, G., Rodriguez, D., Sued, M.: The spatial sign covariance operator: asymptotic results and applications. J. Multivar. Anal. 170, 115–128 (2019)

Boente, G., Salibián-Barrera, M.: $$S-$$estimators for functional principal component analysis. J. Am. Stat. Assoc. 110, 1100–1111 (2015)

Boente, G., Salibián-Barrera, M., Tyler, D.E.: A characterization of elliptical distributions and some optimality properties of principal components for functional data. J. Multivar. Anal. 131, 254–264 (2014)

Bosq, D.: Linear Processes in Function Spaces. Springer, New York (2000)

Cardot, H., Cénac, P., Zitt, P.: Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli 19, 18–431 (2013)

Cardot, H., Godichon-Baggioni, A.: Fast estimation of the median covariation matrix with application to online robust principal components analysis. TEST 26, 461–480 (2017)

Cevallos-Valdiviezo, H.: On methods for prediction based on complex data with missing values and robust principal component analysis.PhD thesis, Ghent University (supervisors Van Aelst S. and Van den Poel, D.) (2016)

Chen, Y., Carroll, C., Dai, X., Fan, J., Hadjipantelis, P.Z., Han, K., Ji, H., Müller, H.G., Wang, J.L.: fdapace: Functional Data Analysis and Empirical Dynamics. R package version 0.5.2. https://CRAN.R-project.org/package=fdapace (2020)

Cuevas, A.: A partial overview of the theory of statistics with functional data. J. Stat. Plan. Inference 147, 1–23 (2014)

Cuevas, A., Febrero, M., Fraiman, R.: Robust estimation and classification for functional data via projection-based depth notions. Comput. Stat. 22, 481–496 (2007)

Febrero, M., Galeano, P., Gonzalez-Manteiga, W.: A functional analysis of NOx levels: location and scale estimation and outlier detection. Comput. Stat. 22, 411–427 (2007)

Febrero, M., Galeano, P., Gonzalez-Manteiga, W.: Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels. Environmetrics 19, 331–345 (2008)

Febrero-Bande, M., Galeano, P., González-Manteiga, W.: Functional principal component regression and functional partial least-squares regression: an overview and a comparative study. Int. Stat. Rev. 85, 61–83 (2017)

Ferraty, F., Romain, Y.: The Oxford Handbook of Functional Data Analysis. Oxford University Press, Oxford (2010)

Ferraty, F., Vieu, Ph: Nonparametric Functional Data Analysis: Theory and Practice. Springer Series in Statistics. Springer, New York (2006)

Fischl, M.A., Ribaudo, H.J., Collier, A.C., Erice, A., Giuliano, M., Dehlinger, M., Eron, J.J. Jr., Saag, M.S., Hammer, S.M., Vella, S., Morse, G.D., Feinberg, J.E., Demeter, L.M., Eshleman, S.H. and Adult AIDS Clinical Trials Group 388 Study Team: A randomized trial of 2 different 4-drug antiretroviral regimens versus a 3-drug regimen, in Advanced Human Immunodeficiency Virus disease. J. Infect. Dis. 188, 625–634 (2003)

Frahm, G.: Generalized elliptical distributions: theory and applications. PhD. thesis from the University of Köln, Germany (2004)

Fraiman, R., Muñiz, G.: Trimmed means for functional data. Test 10, 419–440 (2001)

Gervini, D.: Robust functional estimation using the median and spherical principal components. Biometrika 95, 587–600 (2008)

Gervini, D.: Detecting and handling outlying trajectories in irregularly sampled functional datasets. Ann. Appl. Stat. 3, 1758–1775 (2009)

Goia, A., Vieu, P.: An introduction to recent advances in high/infinite-dimensional statistics. J. Multivar. Anal. 146, 1–6 (2016)

Hall, P., Horowitz, J.L.: Methodology and convergence rates for functional linear regression. Ann. Stat. 35, 70–91 (2007)

Härdle.: Applied Nonparametric Regression. Econometric Society Monographs, vol. 19. Cambridge University Press, Cambridge (1990)

Härdle, W., Tsybakov, B.: Robust nonparametric regression with simultaneous scale curve estimation. Ann. Stat. 16, 120–135 (1988)

Horváth, L., Kokoszka, P.: Inference for Functional Data with Applications. Springer, New York (2012)

Hsing, T., Eubank, R.: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. Wiley, New York (2015)

Hubert, M., Rousseeuw, P., Branden, K.: ROBPCA: a new approach to robust principal component analysis. Technometrics 47, 64–79 (2005)

Hubert, M., Rousseeuw, P., Segaert, P.: Multivariate functional outlier detection. Stat. Methods Appl. 24, 177–202 (2015)

Hubert, M., Vandervieren, E.: An adjusted boxplot for skewed distributions. Comput. Stat. Data Anal. 52, 5186–5201 (2008)

Hyndman, R., Shang, H.: Rainbow plots, bagplots, and boxplots for functional data. J. Comput. Graph. Stat. 19, 29–45 (2010)

Hyndman, R.J., Ullah, S.: Robust forecasting of mortality and fertility rates: a functional data approach. Comput. Stat. Data Anal. 51, 4942–4956 (2007)

James, G., Hastie, T., Sugar, C.: Principal component models for sparse functional data. Biometrika 87(3), 587–602 (2000)

Kraus, D., Panaretos, V.M.: Dispersion operators and resistant second-order functional data analysis. Biometrika 99, 813–832 (2012)

Lee, S., Shin, H., Billor, N.: $$M$$-type smoothing spline estimators for principal functions. Comput. Stat. Data Anal. 66, 89–100 (2013)

Li, Y., Hsing, T.: Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. Ann. Stat. 38, 3321–3351 (2010)

Locantore, N., Marron, J., Simpson, D., Tripoli, N., Zhang, J., Cohen, K.: Robust principal components for functional data. Test 8, 1–28 (1999)

López-Pintado, S., Romo, J.: Depth-based inference for functional data. Comput. Stat. Data Anal. 51, 4957–4968 (2007)

Maronna, R., Martin, R., Yohai, V., Salibián-Barrera, M.: Robust Statistics: Theory and Methods (with R). Wiley, New York (2019)

Maronna, R.: Robust functional principal components for irregularly spaced longitudinal data. Stat. Pap. (2019). https://doi.org/10.1007/s00362-019-01147-2. (In press)

Oh, H.-S., Nychka, D.W., Lee, T.C.M.: The role of pseudo data for robust smoothing with applications to wavelet regression. Biometrika 94, 893–904 (2007)

Park, J.G., Wu, H.: Backfitting and local likelihood methods for nonparametric mixed-effects models with longitudinal data. J. Stat. Plan. Inference 136, 3760–3782 (2006)

R Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020)

Ramsay, J.O., Silverman, B.W.: Functional Data Analysis, 2nd edn. Springer, New York (2005)

Sawant, P., Billor, N., Shin, H.: Functional outlier detection with robust functional principal component analysis. Comput. Stat. 27, 83–102 (2012)

Schauberger, G., Tutz, G.: catdata: Categorical Data. R package version 1.2.2. https://CRAN.R-project.org/package=catdata (2020)

Sinova, B., Gonzalez-Rodriguez, G., Van Aelst, S.: M-estimators of location for functional data. Bernoulli 24, 2328–2357 (2018)

Staniswalis, J.G., Lee, J.J.: Nonparametric regression analysis of longitudinal data. J. Am. Stat. Assoc. 93, 1403–1418 (1998)

Sun, Y., Genton, M.G.: Functional boxplots. J. Comput. Graph. Stat. 20, 316–334 (2011)

Wang, J.L., Chiou, J., Müller, H.G.: Functional data analysis. Annu. Rev. Stat. Appl. 3, 257–295 (2016)

Welsh, A.H.: Robust estimation of smooth regression and spread functions and their derivatives. Stat. Sin. 6, 347–366 (1996)

Wood, S.: Generalized Additive Models: An Introduction with R. CRC Press, Boca Raton (2017)

Yao, F., Müller, H.G., Wang, J.L.: Functional data analysis for sparse longitudinal data. J. Am. Stat. Assoc. 100, 577–590 (2005)

Zeger, S.L., Diggle, P.J.: Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics 50, 689–699 (1994)