Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Theo dõi dấu hiệu mặt vững chắc dựa trên phân tích tổng hợp của dòng quang học và mạng YOLO
The Visual Computer - Trang 1-19 - 2023
Tóm tắt
Các phương pháp thu nhập chuyển động mặt dựa trên dấu hiệu hiện tại có thể mất dấu hiệu mục tiêu trong một số trường hợp, chẳng hạn như những trường hợp bị che khuất và mờ đáng kể. Việc sửa đổi thủ công các trạng thái này đòi hỏi công việc lao động tốn nhiều sức lực. Do đó, cần phát triển một phương pháp theo dõi dấu hiệu vững chắc cung cấp độ ổn định lâu dài, từ đó đơn giản hóa các thao tác thủ công. Trong bài báo này, chúng tôi trình bày một hệ thống theo dõi dấu hiệu mặt mới tập trung vào độ chính xác và ổn định của việc thu nhập hiệu suất. Hệ thống theo dõi bao gồm một bước phân tích tổng hợp với phương pháp theo dõi dòng quang học vững chắc và bộ phát hiện Marker-YOLO được đề xuất. Để minh họa sức mạnh của hệ thống của chúng tôi, một tập dữ liệu thực về hiệu suất của các diễn viên tình nguyện đã được thu thập và các nhãn thực được cung cấp bởi các nghệ sĩ cho các thí nghiệm tiếp theo. Các kết quả cho thấy phương pháp của chúng tôi vượt trội hơn so với các bộ theo dõi tiên tiến như SiamDW và ECO trong các nhiệm vụ cụ thể trong khi chạy ở tốc độ thời gian thực 38 fps. Các kết quả sai số căn bậc hai trung bình và diện tích dưới đường cong xác nhận những cải tiến về độ chính xác và ổn định của phương pháp của chúng tôi.
Từ khóa
#theo dõi dấu hiệu #chuyển động mặt #dòng quang học #YOLO #ổn định #chính xác #thu nhập hiệu suấtTài liệu tham khảo
Ekman, P.: Facial expression and emotion. Am. Psychol. 48(4), 384–392 (1993). https://doi.org/10.1037/0003-066X.48.4.384
Nusseck, M., Cunningham, D.W., Wallraven, C., Bülthoff, H.H.: The contribution of different facial regions to the recognition of conversational expressions. J. Vis. 8(8), 1–1 (2008). https://doi.org/10.1167/8.8.1
Luo, L., Weng, D., Ding, N., Hao, J., Tu, Z.: The effect of avatar facial expressions on trust building in social virtual reality. Visual Comput. (2022)
Zollhöfer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T., Pérez, P., Stamminger, M., Nießner, M., Theobalt, C.: State of the art on monocular 3d face reconstruction, tracking, and applications. Comput. Graph. Forum 37(2), 523–550 (2018). https://doi.org/10.1111/cgf.13382
Bhat, K.S., Goldenthal, R., Ye, Y., Mallet, R., Koperwas, M.: High fidelity facial animation capture and retargeting with contours. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’13, pp. 7–14. Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2485895.2485915
R3dS. WRAP4D. R3dS. WRAP4D. https://www.russian3dscanner.com/wrap4d/
Bregler, C., Bhat, K., Saltzman, J., Allen, B.: Ilm’s multitrack: a new visual tracking framework for high-end vfx production. In: SIGGRAPH 2009: Talks. SIGGRAPH ’09. Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1597990.1598019
Vicon Motion Systems Ltd. CaraPost. Vicon Motion Systems Ltd. CaraPost.. https://www.vicon.com/
Jocher, G., Stoken, A., Borovec, J., NanoCode012, Chaurasia, A., TaoXie, Changyu, L., V, A., Laughing, tkianai, yxNONG, Hogan, A., lorenzomammana, AlexWang1900, Hajek, J., Diaconu, L., Marc, Kwon, Y., oleg, wanghaoyang0106, Defretin, Y., Lohia, A., ml5ah, Milanko, B., Fineran, B., Khromov, D., Yiwei, D., Doug, Durgesh, Ingham, F.: ultralytics/yolov5: v5.0 - yolov5-p6 1280 models, aws, supervise.ly and youtube integrations (2021). https://doi.org/10.5281/zenodo.4679653
Lindeberg, T.: Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. Int. J. Comput. Vis. 11(3), 283–318 (1993)
Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4), 325–340 (1987). https://doi.org/10.1007/BF02278710
Williams, L.: Performance-driven facial animation. In: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’90, pp. 235–242. Association for Computing Machinery, New York, NY, USA (1990). https://doi.org/10.1145/97879.97906
Guenter, B., Grimm, C., Wood, D., Malvar, H., Pighin, F.: Making faces. In: ACM SIGGRAPH 2006 Courses. SIGGRAPH ’06, p. 18. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1185657.1185858
Lin, I.-C., Ouhyoung, M.: Mirror mocap: automatic and efficient capture of dense 3D facial motion parameters from video. Vis. Comput. 21(6), 355–372 (2005). https://doi.org/10.1007/s00371-005-0291-5
Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., Gross, M.: Multi-scale capture of facial geometry and motion. ACM Trans. Graph. 26(3), 33 (2007). https://doi.org/10.1145/1276377.1276419
Bickel, B., Lang, M., Botsch, M., Otaduy, M.A., Gross, M.: Pose-space animation and transfer of facial details. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’08, pp. 57–66. Eurographics Association, Goslar, DEU (2008)
Borshukov, G., Montgomery, J., Werner, W.: Playable universal capture: Compression and real-time sequencing of image-based facial animation. In: ACM SIGGRAPH 2006 Courses. SIGGRAPH ’06, p. 8. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1185657.1185848
Choe, B., Lee, H., Ko, H.-S.: Performance-driven muscle-based facial animation. J. Vis. Comput. Anim. 12(2), 67–79 (2001). https://doi.org/10.1002/vis.246
Huang, H., Chai, J., Tong, X., Wu, H.-T.: Leveraging motion capture and 3D scanning for high-fidelity facial performance acquisition. In: ACM SIGGRAPH 2011 Papers. SIGGRAPH ’11. Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1964921.1964969
Ravikumar, S., Davidson, C., Kit, D., Campbell, N., Benedetti, L., Cosker, D.: Reading between the dots: Combining 3d markers and facs classification for high-quality blendshape facial animation. In: Proceedings of Graphics Interface 2016. GI 2016, pp. 143–151. Canadian Human-Computer Communications Society/Société canadienne du dialogue humain-machine (2016). https://doi.org/10.20380/GI2016.18
Fang, X., Wei, X., Zhang, Q., Zhou, D.: Forward non-rigid motion tracking for facial mocap. Vis. Comput. 30(2), 139–157 (2014). https://doi.org/10.1007/s00371-013-0790-8
Moser, L., Hendler, D., Roble, D.: Masquerade: Fine-scale details for head-mounted camera motion capture data. In: ACM SIGGRAPH 2017 Talks. SIGGRAPH ’17. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3084363.3085086
Moser, L., Williams, M., Hendler, D., Roble, D.: High-quality, cost-effective facial motion capture pipeline with 3d regression. In: ACM SIGGRAPH 2018 Talks. SIGGRAPH ’18. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3214745.3214755
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001). https://doi.org/10.1109/34.927467
Chuang, E., Bregler, C.: Performance driven facial animation using blendshape interpolation. Computer Science Technical Report, Stanford University 2(2), 3 (2002)
Chai, J.-x., Xiao, J., Hodgins, J.: Vision-based control of 3d facial animation. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’03, pp. 193–206. Eurographics Association, Goslar, DEU (2003)
Saragih, J.M., Lucey, S., Cohn, J.F.: Real-time avatar animation from a single image. In: 2011 IEEE International Conference on Automatic Face Gesture Recognition (FG), pp. 117–124 (2011). https://doi.org/10.1109/FG.2011.5771383
Moiza, G., Tal, A., Shimshoni, I., Barnett, D., Moses, Y.: Image-based animation of facial expressions. Vis. Comput. 18(7), 445–467 (2002). https://doi.org/10.1007/s003710100157
Cao, C., Hou, Q., Zhou, K.: Displaced dynamic expression regression for real-time facial tracking and animation. ACM Trans. Graph. (2014). https://doi.org/10.1145/2601097.2601204
Liu, S., Wang, J., Zhang, M., Wang, Z.: Three-dimensional cartoon facial animation based on art rules. Vis. Comput. 29(11), 1135–1149 (2013). https://doi.org/10.1007/s00371-012-0756-2
Wu, C., Bradley, D., Gross, M., Beeler, T.: An anatomically-constrained local deformation model for monocular face capture. ACM Trans. Graph. (2016). https://doi.org/10.1145/2897824.2925882
Barrielle, V., Stoiber, N.: Realtime performance-driven physical simulation for facial animation. Comput. Graph. Forum 38(1), 151–166 (2019). https://doi.org/10.1111/cgf.13450
IMAGE METRICS. Live Driver\(^{{\rm TM}}\). IMAGE METRICS. Live Driver\(^{{\rm TM}}\). http://www.image-metrics.com
DYNAMIXYZ. HMC & Grabber\(^{{\rm TM}}\). DYNAMIXYZ. HMC & Grabber\(^{{\rm TM}}\). http://www.dynamixyz.com
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence—Volume 2. IJCAI’81, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1981)
Bouguet, J.-Y.: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel corporation 5(1–10), 4 (2001)
Blache, L., Loscos, C., Lucas, L.: Robust motion flow for mesh tracking of freely moving actors. Vis. Comput. 32(2), 205–216 (2016). https://doi.org/10.1007/s00371-015-1191-y
Zhao, J., Mao, X., Zhang, J.: Learning deep facial expression features from image and optical flow sequences using 3D CNN. Vis. Comput. 34(10), 1461–1475 (2018). https://doi.org/10.1007/s00371-018-1477-y
Kim, Y.H., Martínez, A.M., Kak, A.C.: A local approach for robust optical flow estimation under varying illumination. In: Proceedings of the British Machine Vision Conference, pp. 91–19110. BMVA Press, UK (2004). https://doi.org/10.5244/C.18.91
Senst, T., Eiselein, V., Sikora, T.: Robust local optical flow for feature tracking. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1377–1387 (2012). https://doi.org/10.1109/TCSVT.2012.2202070
Senst, T., Geistert, J., Sikora, T.: Robust local optical flow: Long-range motions and varying illuminations. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4478–4482 (2016). https://doi.org/10.1109/ICIP.2016.7533207
Zhu, Z., Wu, W., Zou, W., Yan, J.: End-to-end flow correlation tracking with spatial-temporal attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Vihlman, M., Visala, A.: Optical flow in deep visual tracking. Proceedings of the AAAI Conference on Artificial Intelligence 34(07), 12112–12119 (2020). https://doi.org/10.1609/aaai.v34i07.6890
Qu, Z., Shi, H., Tan, S., Song, B., Tao, Y.: A flow-guided self-calibration siamese network for visual tracking. Vis. Comput. 39(2), 625–637 (2023). https://doi.org/10.1007/s00371-021-02362-5
King, D.E.: Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)
Wang, C.-Y., Liao, H.-Y.M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., Yeh, I.-H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015). https://doi.org/10.1109/TPAMI.2015.2389824
Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: Panet: Few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Ekman, P., Friesen, W., Hager, J.: The Facial Action Coding System (2002)
Arriaga, O., Valdenegro-Toro, M., Plöger, P.: Real-time convolutional neural networks for emotion and gender classification. arXiv preprint arXiv:1710.07557 (2017)
Ma, B., Huang, L., Shen, J., Shao, L., Yang, M.-H., Porikli, F.: Visual tracking under motion blur. IEEE Trans. Image Process. 25(12), 5867–5876 (2016). https://doi.org/10.1109/TIP.2016.2615812
Guo, Q., Cheng, Z., Juefei-Xu, F., Ma, L., Xie, X., Liu, Y., Zhao, J.: Learning to adversarially blur visual object tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10839–10848 (2021)
Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Atom: Accurate tracking by overlap maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Know your surroundings: Exploiting scene information for object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision—ECCV 2020, pp. 205–221. Springer, Cham (2020)
Danelljan, M., Häger, G., Khan, F., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: Proceedings of the British Machine Vision Conference 2014. BMVA Press, UK (2014). https://doi.org/10.5244/C.28.65
Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.: Staple: Complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: ECO: efficient convolution operators for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Wu, Y., Lim, J., Yang, M.-H.: Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)
Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36(6), 194–119417 (2017)
