Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự nổi bật vững chắc của phản ứng tế bào địa điểm được điều chỉnh chặt chẽ trong các nơron hồi hải mã với sự không đồng nhất về cấu trúc và sinh lý học
Tóm tắt
Các nơron hình chóp trong hồi hải mã duy trì sự lan truyền của các tín hiệu điện nhanh và là các cấu trúc phi điện tích có độ không đồng nhất giữa các tế bào trong sự phân nhánh nhờ dendritic phức tạp của chúng. Trong nghiên cứu này, chúng tôi đã chứng minh rằng việc điều chỉnh chặt chẽ trường địa điểm và một số bản đồ chức năng soma-dendritic có thể xuất hiện đồng thời bất chấp sự tồn tại của các không đồng nhất hình học trong các nơron này. Chúng tôi đã thiết lập điều này bằng cách sử dụng một chiến lược tìm kiếm ngẫu nhiên không thiên lệch liên quan đến hàng ngàn mô hình trải rộng qua nhiều hình thái và các hồ sơ phân bổ synapse rải rác và biểu hiện kênh khác nhau. Về mặt cơ chế, sử dụng các mô hình knockout ảo (VKM), chúng tôi đã khám phá tác động của việc điều chỉnh song phương trong sự phổ biến của các đỉnh dendritic đối với độ sắc nét của trường địa điểm. Nhất quán với tài liệu trước đó, chúng tôi đã phát hiện ra rằng ở tất cả các hình thái, việc knockout ảo của các kênh natri nhanh trên nhánh hoặc các thụ thể N-methyl-d-aspartate dẫn đến giảm sự phổ biến của các đỉnh dendritic, trong khi các knockout kênh kali loại A dẫn đến sự tăng không đặc hiệu trong sự phổ biến của các đỉnh dendritic. Tuy nhiên, độ sắc nét của việc điều chỉnh trường địa điểm bị suy giảm nghiêm trọng trong cả ba bộ VKM, cho thấy rằng độ sắc nét trong việc điều chỉnh tính năng được duy trì bởi một sự cân bằng tinh vi giữa các cơ chế thúc đẩy và những cơ chế ngăn cản việc khởi tạo các đỉnh dendritic. Từ quan điểm chức năng trong sự nổi bật của việc điều chỉnh tính năng sắc nét và các bản đồ chức năng nội tại, trong khuôn khổ này, sự biến đổi hình học được bù đắp bởi sự kết hợp của nền dân chủ synapse, khả năng của các synapse phân tán ngẫu nhiên để tạo ra việc điều chỉnh sắc nét thông qua việc khởi tạo các đỉnh dendritic, và tính đa dạng của kênh ion. Các kết quả của chúng tôi cho thấy các nơron không điện tích được trao cho nhiều mức tự do, bao gồm biểu hiện kênh, vị trí synapse và vi cấu trúc hình thái, để đạt được sự mã hóa tính năng sắc nét và tính ổn định về khả năng kích thích.
Từ khóa
#hồi hải mã #tế bào địa điểm #phản ứng tế bào #nơron hình chóp #sinh lý học #không đồng nhất hình họcTài liệu tham khảo
Ambros-Ingerson J, Holmes WR (2005) Analysis and comparison of morphological reconstructions of hippocampal field CA1 pyramidal cells. Hippocampus 15(3):302–315. https://doi.org/10.1002/hipo.20051
Andrasfalvy BK, Magee JC (2001) Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. J Neurosci 21(23):9151–9159
Anirudhan A, Narayanan R (2015) Analogous synaptic plasticity profiles emerge from disparate channel combinations. J Neurosci 35(11):4691–4705. https://doi.org/10.1523/JNEUROSCI.4223-14.2015
Ascoli GA, Donohue DE, Halavi M (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J Neurosci 27(35):9247–9251. https://doi.org/10.1523/JNEUROSCI.2055-07.2007
Ashhad S, Narayanan R (2013) Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. J Physiol 591(Pt 7):1645–1669. https://doi.org/10.1113/jphysiol.2012.245688
Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40(2):331–346
Basak R, Narayanan R (2018a) Active dendrites regulate the spatiotemporal spread of signaling microdomains. PLoS Comput Biol 14(11):e1006485. https://doi.org/10.1371/journal.pcbi.1006485
Basak R, Narayanan R (2018b) Spatially dispersed synapses yield sharply-tuned place cell responses through dendritic spike initiation. J Physiol 596(17):4173–4205. https://doi.org/10.1113/JP275310
Beining M, Mongiat LA, Schwarzacher SW, Cuntz H, Jedlicka P (2017) T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells. eLife. https://doi.org/10.7554/eLife.26517
Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40(5–6):405–412. https://doi.org/10.1016/j.ceca.2006.09.002
Bittner KC, Grienberger C, Vaidya SP, Milstein AD, Macklin JJ, Suh J, Tonegawa S, Magee JC (2015) Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat Neurosci 18(8):1133–1142. https://doi.org/10.1038/nn.4062
Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC (2017) Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357(6355):1033–1036. https://doi.org/10.1126/science.aan3846
Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33(3):325–340
Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York
Cajal SR (1992) Textura del sistema nervioso del hombre y de los vertebrados: estudios sobre el plan estructural y composición histológica de los centros nerviosos adicionados de consideraciones fisiológicas fundadas en los nuevos descubrimientos. Instituto de Neurociencias
Cannon RC, O’Donnell C, Nolan MF (2010) Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000886
Carnevale NT, Hines ML (2006) The NEURON book. Cambridge University Press, Cambridge
Carnevale NT, Tsai KY, Claiborne BJ, Brown TH (1997) Comparative electrotonic analysis of three classes of rat hippocampal neurons. J Neurophysiol 78(2):703–720
Cembrowski MS, Spruston N (2019) Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. Nat Rev Neurosci 20(4):193–204. https://doi.org/10.1038/s41583-019-0125-5
Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N (2016) Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron 89(2):351–368. https://doi.org/10.1016/j.neuron.2015.12.013
Chen X, Yuan LL, Zhao C, Birnbaum SG, Frick A, Jung WE, Schwarz TL, Sweatt JD, Johnston D (2006) Deletion of Kv4.2 gene eliminates dendritic A-type K+ current and enhances induction of long-term potentiation in hippocampal CA1 pyramidal neurons. J Neurosci 26(47):12143–12151
Cherniak C (1992) Local optimization of neuron arbors. Biol Cybern 66(6):503–510
Chklovskii DB (2004) Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43(5):609–617. https://doi.org/10.1016/j.neuron.2004.08.012
Colbert CM, Magee JC, Hoffman DA, Johnston D (1997) Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 17(17):6512–6521
Cuntz H, Forstner F, Borst A, Hausser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000877
Das A, Narayanan R (2015) Active dendrites mediate stratified gamma-range coincidence detection in hippocampal model neurons. J Physiol 593(16):3549–3576. https://doi.org/10.1113/JP270688
Das A, Narayanan R (2017) Theta-frequency selectivity in the somatic spike triggered average of rat hippocampal pyramidal neurons is dependent on HCN channels. J Neurophysiol 118(4):2251–2266. https://doi.org/10.1152/jn.00356.2017
Das A, Rathour RK, Narayanan R (2017) Strings on a violin: location dependence of frequency tuning in active dendrites. Front Cell Neurosci 11:72. https://doi.org/10.3389/fncel.2017.00072
Dhupia N, Rathour RK, Narayanan R (2014) Dendritic atrophy constricts functional maps in resonance and impedance properties of hippocampal model neurons. Front Cell Neurosci 8:456. https://doi.org/10.3389/fncel.2014.00456
Dougherty KA, Islam T, Johnston D (2012) Intrinsic excitability of CA1 pyramidal neurones from the rat dorsal and ventral hippocampus. J Physiol 590(Pt 22):5707–5722. https://doi.org/10.1113/jphysiol.2012.242693
Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98(24):13763–13768. https://doi.org/10.1073/pnas.231499798
Ferrante M, Migliore M, Ascoli GA (2013) Functional impact of dendritic branch-point morphology. J Neurosci 33(5):2156–2165. https://doi.org/10.1523/JNEUROSCI.3495-12.2013
Foster WR, Ungar LH, Schwaber JS (1993) Significance of conductances in Hodgkin–Huxley models. J Neurophysiol 70(6):2502–2518
Frick A, Magee J, Koester HJ, Migliore M, Johnston D (2003) Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J Neurosci 23(8):3243–3250
Gasparini S, Migliore M, Magee JC (2004) On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci 24(49):11046–11056. https://doi.org/10.1523/JNEUROSCI.2520-04.2004
Geisler C, Diba K, Pastalkova E, Mizuseki K, Royer S, Buzsaki G (2010) Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proc Natl Acad Sci USA 107(17):7957–7962. https://doi.org/10.1073/pnas.0912478107
Golding NL, Spruston N (1998) Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21(5):1189–1200
Golding NL, Jung HY, Mickus T, Spruston N (1999) Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. J Neurosci 19(20):8789–8798
Golding NL, Kath WL, Spruston N (2001) Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J Neurophysiol 86(6):2998–3010
Golding NL, Staff NP, Spruston N (2002) Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418(6895):326–331. https://doi.org/10.1038/nature00854
Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568(Pt 1):69–82. https://doi.org/10.1113/jphysiol.2005.086793
Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure, robustness, and modulation of neuronal models. J Neurosci 21(14):5229–5238. https://doi.org/10.1523/JNEUROSCI.21-14-05229.2001
Harnett MT, Makara JK, Spruston N, Kath WL, Magee JC (2012) Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491(7425):599–602. https://doi.org/10.1038/nature11554
Hausser M (2001) Synaptic function: dendritic democracy. Curr Biol 11(1):R10–R12
Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387(6636):869–875
Igarashi KM, Ito HT, Moser EI, Moser MB (2014) Functional diversity along the transverse axis of hippocampal area CA1. FEBS Lett 588(15):2470–2476. https://doi.org/10.1016/j.febslet.2014.06.004
Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10(9):3178–3182
Jayant K, Hirtz JJ, Plante IJ, Tsai DM, De Boer WD, Semonche A, Peterka DS, Owen JS, Sahin O, Shepard KL, Yuste R (2017) Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat Nanotechnol 12(4):335–342. https://doi.org/10.1038/nnano.2016.268
Johnston D, Narayanan R (2008) Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 31(6):309–316. https://doi.org/10.1016/j.tins.2008.03.004
Johnston D, Magee JC, Colbert CM, Cristie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186. https://doi.org/10.1146/annurev.ne.19.030196.001121
Johnston D, Hoffman DA, Colbert CM, Magee JC (1999) Regulation of back-propagating action potentials in hippocampal neurons. Curr Opin Neurobiol 9(3):288–292
Johnston D, Hoffman DA, Magee JC, Poolos NP, Watanabe S, Colbert CM, Migliore M (2000) Dendritic potassium channels in hippocampal pyramidal neurons. J Physiol 525(Pt 1):75–81
Johnston D, Christie BR, Frick A, Gray R, Hoffman DA, Schexnayder LK, Watanabe S, Yuan LL (2003) Active dendrites, potassium channels and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 358(1432):667–674. https://doi.org/10.1098/rstb.2002.1248
Katz Y, Kath WL, Spruston N, Hasselmo ME (2007) Coincidence detection of place and temporal context in a network model of spiking hippocampal neurons. PLoS Comput Biol 3(12):e234. https://doi.org/10.1371/journal.pcbi.0030234
Kim J, Wei DS, Hoffman DA (2005) Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones. J Physiol 569(Pt 1):41–57. https://doi.org/10.1113/jphysiol.2005.095042
Kim Y, Sinclair R, Chindapol N, Kaandorp JA, De Schutter E (2012) Geometric theory predicts bifurcations in minimal wiring cost trees in biology are flat. PLoS Comput Biol 8(4):e1002474. https://doi.org/10.1371/journal.pcbi.1002474
Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser MB (2008) Finite scale of spatial representation in the hippocampus. Science 321(5885):140–143. https://doi.org/10.1126/science.1157086
Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13(2):413–422
Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80(9):2799–2802. https://doi.org/10.1073/pnas.80.9.2799
Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941(1–2):11–28
Kwon T, Sakamoto M, Peterka DS, Yuste R (2017) Attenuation of synaptic potentials in dendritic spines. Cell Rep 20(5):1100–1110. https://doi.org/10.1016/j.celrep.2017.07.012
Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50(2):291–307. https://doi.org/10.1016/j.neuron.2006.03.016
Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613–7624
Magee JC (1999) Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2(6):508–514
Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3(9):895–903
Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487(Pt 1):67–90
Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213
Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382(6589):363–366. https://doi.org/10.1038/382363a0
Mainen ZF, Carnevale NT, Zador AM, Claiborne BJ, Brown TH (1996) Electrotonic architecture of hippocampal CA1 pyramidal neurons based on three-dimensional reconstructions. J Neurophysiol 76(3):1904–1923
Malik R, Dougherty KA, Parikh K, Byrne C, Johnston D (2016) Mapping the electrophysiological and morphological properties of CA1 pyramidal neurons along the longitudinal hippocampal axis. Hippocampus 26(3):341–361. https://doi.org/10.1002/hipo.22526
Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14(2):133–138. https://doi.org/10.1038/nn.2735
Migliore M (2003) On the integration of subthreshold inputs from perforant path and Schaffer collaterals in hippocampal CA1 pyramidal neurons. J Comput Neurosci 14(2):185–192
Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7(1):5–15
Migliore R, Lupascu CA, Bologna LL, Romani A, Courcol JD, Antonel S, Van Geit WAH, Thomson AM, Mercer A, Lange S, Falck J, Rossert CA, Shi Y, Hagens O, Pezzoli M, Freund TF, Kali S, Muller EB, Schurmann F, Markram H, Migliore M (2018) The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow. PLoS Comput Biol 14(9):e1006423. https://doi.org/10.1371/journal.pcbi.1006423
Mishra P, Narayanan R (2019) Disparate forms of heterogeneities and interactions among them drive channel decorrelation in the dentate gyrus: degeneracy and dominance. Hippocampus 29(4):378–403. https://doi.org/10.1002/hipo.23035
Mittal D, Narayanan R (2018) Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations and intrinsic excitability of entorhinal stellate cells. J Neurophysiol 120(2):576–600. https://doi.org/10.1152/jn.00136.2018
Moore JJ, Ravassard PM, Ho D, Acharya L, Kees AL, Vuong C, Mehta MR (2017) Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats. Science. https://doi.org/10.1126/science.aaj1497
Mukunda CL, Narayanan R (2017) Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. J Physiol 595(8):2611–2637. https://doi.org/10.1113/JP273482
Narayanan R, Chattarji S (2010) Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus. J Neurophysiol 103(6):3070–3083. https://doi.org/10.1152/jn.00913.2009
Narayanan R, Johnston D (2007) Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56(6):1061–1075
Narayanan R, Johnston D (2008) The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. J Neurosci 28(22):5846–5860
Narayanan R, Johnston D (2010) The h current is a candidate mechanism for regulating the sliding modification threshold in a BCM-like synaptic learning rule. J Neurophysiol 104(2):1020–1033. https://doi.org/10.1152/jn.01129.2009
Narayanan R, Johnston D (2012) Functional maps within a single neuron. J Neurophysiol 108(9):2343–2351. https://doi.org/10.1152/jn.00530.2012
Narayanan R, Narayan A, Chattarji S (2005) A probabilistic framework for region-specific remodeling of dendrites in three-dimensional neuronal reconstructions. Neural Comput 17(1):75–96
Neves SR, Iyengar R (2002) Modeling of signaling networks. BioEssays 24(12):1110–1117. https://doi.org/10.1002/bies.1154
Neves SR, Iyengar R (2009) Models of spatially restricted biochemical reaction systems. J Biol Chem 284(9):5445–5449. https://doi.org/10.1074/jbc.R800058200
Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P, Taubenfeld SM, Alberini CM, Schaff JC, Blitzer RD, Moraru II, Iyengar R (2008) Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133(4):666–680. https://doi.org/10.1016/j.cell.2008.04.025
Ostojic S, Szapiro G, Schwartz E, Barbour B, Brunel N, Hakim V (2015) Neuronal morphology generates high-frequency firing resonance. J Neurosci 35(18):7056–7068. https://doi.org/10.1523/JNEUROSCI.3924-14.2015
Otopalik AG, Goeritz ML, Sutton AC, Brookings T, Guerini C, Marder E (2017a) Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion. eLife. https://doi.org/10.7554/eLife.22352
Otopalik AG, Sutton AC, Banghart M, Marder E (2017b) When complex neuronal structures may not matter. eLife. https://doi.org/10.7554/eLife.23508
Otopalik AG, Pipkin J, Marder E (2019) Neuronal morphologies built for reliable physiology in a rhythmic motor circuit. eLife. https://doi.org/10.7554/eLife.41728
Popovic MA, Carnevale N, Rozsa B, Zecevic D (2015) Electrical behaviour of dendritic spines as revealed by voltage imaging. Nat Commun 6:8436. https://doi.org/10.1038/ncomms9436
Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7(12):1345–1352. https://doi.org/10.1038/nn1352
Pyapali GK, Turner DA (1996) Increased dendritic extent in hippocampal CA1 neurons from aged F344 rats. Neurobiol Aging 17(4):601–611
Pyapali GK, Sik A, Penttonen M, Buzsaki G, Turner DA (1998) Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: intracellular staining in vivo and in vitro. J Comp Neurol 391(3):335–352. https://doi.org/10.1002/(SICI)1096-9861(19980216)391:3%3c335:AID-CNE4%3e3.0.CO;2-2
Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30(5):1138–1168
Rall W (1977) Core conductor theory and cable properties of neurons. In: Kandel ER (ed) Handbook of physiology. The nervous system. Cellular biology of neurons, vol 1. American Physiological Society, Bethesda, pp 39–97
Rathour RK, Narayanan R (2012) Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons. J Physiol 590(Pt 22):5629–5652. https://doi.org/10.1113/jphysiol.2012.239418
Rathour RK, Narayanan R (2014) Homeostasis of functional maps in active dendrites emerges in the absence of individual channelostasis. Proc Natl Acad Sci USA 111(17):E1787–1796. https://doi.org/10.1073/pnas.1316599111
Rathour RK, Narayanan R (2019) Degeneracy in hippocampal physiology and plasticity. Hippocampus 29(10):980–1022. https://doi.org/10.1101/203943
Rathour RK, Malik R, Narayanan R (2016) Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning. Sci Rep 6:24678. https://doi.org/10.1038/srep24678
Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408. https://doi.org/10.1152/physrev.00004.2005
Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89(6):3143–3154
Shah MM, Migliore M, Valencia I, Cooper EC, Brown DA (2008) Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 105(22):7869–7874. https://doi.org/10.1073/pnas.0802805105
Sheffield ME, Dombeck DA (2015) Calcium transient prevalence across the dendritic arbour predicts place field properties. Nature 517(7533):200–204. https://doi.org/10.1038/nature13871
Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406
Smith MA, Ellis-Davies GC, Magee JC (2003) Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. J Physiol 548(Pt 1):245–258
Soltesz I, Losonczy A (2018) CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nat Neurosci 21(4):484–493. https://doi.org/10.1038/s41593-018-0118-0
Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221. https://doi.org/10.1038/nrn2286
Spruston N, Jaffe DB, Williams SH, Johnston D (1993) Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events. J Neurophysiol 70(2):781–802
Spruston N, Jaffe DB, Johnston D (1994) Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends Neurosci 17(4):161–166
Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268(5208):297–300
Spruston N, Stuart GJ, Hausser M (2007) Dendritic Integration. In: Stuart GJ, Spruston N, Hausser M (eds) Dendrites. Oxford University Press, New York
Srikanth S, Narayanan R (2015) Variability in state-dependent plasticity of intrinsic properties during cell-autonomous self-regulation of calcium homeostasis in hippocampal model neurons. eNeuro. https://doi.org/10.1523/ENEURO.0053-15.2015
Stiefel KM, Sejnowski TJ (2007) Mapping function onto neuronal morphology. J Neurophysiol 98(1):513–526. https://doi.org/10.1152/jn.00865.2006
Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15(10):655–669. https://doi.org/10.1038/nrn3785
Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458):69–72
Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18(10):3501–3510
Takahashi H, Magee JC (2009) Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62(1):102–111. https://doi.org/10.1016/j.neuron.2009.03.007
Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances determine electrophysiological properties in a multicompartment model. J Neurosci 29(17):5573–5586. https://doi.org/10.1523/JNEUROSCI.4438-08.2009
Vaidya SP, Johnston D (2013) Temporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neurons. Nat Neurosci 16(12):1812–1820. https://doi.org/10.1038/nn.3562
van Elburg RA, van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol 6(5):e1000781. https://doi.org/10.1371/journal.pcbi.1000781
van Ooyen A, Duijnhouwer J, Remme MW, van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Network 13(3):311–325
Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85(2):926–937
Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22(15):6810–6818
Weaver CM, Wearne SL (2008) Neuronal firing sensitivity to morphologic and active membrane parameters. PLoS Comput Biol 4(1):e11. https://doi.org/10.1371/journal.pcbi.0040011
Zador A, Koch C (1994) Linearized models of calcium dynamics: formal equivalence to the cable equation. J Neurosci 14(8):4705–4715