Robust clustering around regression lines with high density regions

Advances in Data Analysis and Classification - Tập 8 Số 1 - Trang 5-26 - 2014
Andrea Cerioli1, Domenico Perrotta2
1University of Parma, Parma, Italy
2European Commission Joint Research Centre, Ispra, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Atkinson AC, Riani M, Cerioli A (2004) Exploring multivariate data with the forward search. Springer, New York

Atkinson AC, Riani M, Cerioli A (2010) The forward search: theory and data analysis. J Korean Stat Soc 39:117–134

Baddeley A, Turner R (2012) Package ‘spatstat’: spatial point pattern analysis, model-fitting, simulation, tests. http://www.cran.r-project.org/web/packages/spatstat/spatstat.pdf

Bai X, Yao W, Boyer JE (2012) Robust fitting of mixture regression models. Comput Stat Data Anal 56:2347–2359

Byers S, Raftery AE (1998) Nearest-neighbor clutter removal for estimating features in spatial point processes. J Am Stat Assoc 93:577–584

Coretto P, Hennig C (2010) A simulation study to compare robust clustering methods based on mixtures. Adv Data Anal Classif 4:111–135

Dasgupta A, Raftery AE (1998) Detecting features in spatial point processes with clutter via model-based clustering. J Am Stat Assoc 93:294–302

De Battisti F, Salini S (2013) Robust analysis of bibliometric data. Stat Methods Appl 22:269–283

Diggle PJ (1985) A kernel method for smoothing point process data. Appl Stat 34:138–147

FATF-OECD, Financial Action Task Force (2006) Trade based money laundering. http://www.fatf-gafi.org/

FATF-OECD, Financial Action Task Force (2008) Best practices on trade based money laundering. http://www.fatf-gafi.org/

Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631

Fritz H, Garcìa-Escudero LA, Mayo-Iscar A (2012) tclust: an R package for a trimming approach to Cluster Analysis. J Stat Softw 47.

Garcìa-Escudero LA, Gordaliza A, Van Aelst S, Zamar R (2009) Robust linear clustering. J R Stat Soc B 71:301–319

Garcìa-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2010a) A review of robust clustering methods. Adv Data Anal Classif 4:89–109

Garcìa-Escudero LA, Gordaliza A, Mayo-Iscar A (2010b) Robust clusterwise linear regression through trimming. Comput Stat Data Anal 54:3057–3069

Heikkonen J, Perrotta D, Riani M, Torti F (2013) Issues on clustering and data gridding. In: Giusti A, Ritter G, Vichi M (eds) Classification and data mining. Springer, Berlin, pp 37–44

Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester

Neykov N, Filzmoser P, Dimova R, Neytchev P (2007) Robust fitting of mixtures using the trimmed likelihood estimator. Comput Stat Data Anal 52:299–308

Riani M, Atkinson AC, Cerioli A et al (2012) Problems and challenges in the analysis of complex data: static and dynamic approaches. In: Di Ciaccio A (ed) Advanced statistical methods for the analysis of large data-sets. Springer, Berlin, pp 145–157

Riani M, Cerioli A, Atkinson AC, Perrotta D, Torti F et al (2008) Fitting mixtures of regression lines with the forward search. In: Fogelman-Soulié F (ed) Mining massive data sets for security. IOS Press, Amsterdam, pp 271–286

Rocci R, Gattone SA, Vichi M (2009) A new dimension reduction method: factor discriminant K-means. J Classif 28:210–226

Van Aelst S, Wang X, Zamar R, Zhu R (2006) Linear grouping using orthogonal regression. Comput Stat Data Anal 50:1287–1312

Vichi M, Rocci R, Kiers HAL (2007) Simultaneous component and clustering models for three-way data: within and between approaches. J Classif 24:71–98