Robust adaptive Metropolis algorithm with coerced acceptance rate

Matti Vihola1
1Department of Mathematics and Statistics, University of Jyväskylä, University of Jyväskylä, Finland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrieu, C., Moulines, É.: On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16(3), 1462–1505 (2006)

Andrieu, C., Robert, C.P.: Controlled MCMC for optimal sampling. Tech. Rep. Ceremade 0125, Université Paris Dauphine (2001)

Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Stat. Comput. 18(4), 343–373 (2008)

Andrieu, C., Moulines, É., Volkov, S.: Convergence of stochastic approximation for Lyapunov stable dynamics: a proof from first principles. Technical report (2004)

Andrieu, C., Moulines, É., Priouret, P.: Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44(1), 283–312 (2005)

Atchadé, Y., Fort, G.: Limit theorems for some adaptive MCMC algorithms with subgeometric kernels. Bernoulli 16(1), 116–154 (2010)

Atchadé, Y.F., Rosenthal, J.S.: On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11(5), 815–828 (2005)

Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Applications of Mathematics, vol. 22. Springer, Berlin (1990)

Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge (2008)

Dongarra, J.J., Bunch, J.R., Moler, C.B., Stewart, G.W.: LINPACK Users’ Guide. Society for Industrial and Applied Mathematics (1979)

Gelman, A., Roberts, G.O., Gilks, W.R.: Efficient Metropolis jumping rules. In: Bayesian Statistics 5, pp. 599–607. Oxford University Press, Oxford (1996)

Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, Boca Raton (1998)

Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7(2), 223–242 (2001)

Hastie, D.: Toward automatic reversible jump Markov chain Monte Carlo. PhD thesis, University of Bristol (2005)

Huber, P.J.: Robust Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1981)

Jarner, S.F., Hansen, E.: Geometric ergodicity of Metropolis algorithms. Stoch. Process. Appl. 85, 341–361 (2000)

Jarner, S.F., Roberts, G.O.: Convergence of heavy-tailed Monte Carlo Markov chain algorithms. Scand. J. Stat. 34(4), 781–815 (2007)

Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications, 2nd edn. Applications of Mathematics: Stochastic Modelling and Applied Probability, vol. 35. Springer, Berlin (2003)

Nummelin, E.: MC’s for MCMC’ists. Int. Stat. Rev. 70(2), 215–240 (2002)

Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (1999)

Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 16(4), 351–367 (2001)

Roberts, G.O., Rosenthal, J.S.: General state space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44(2), 458–475 (2007)

Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Comput. Graph. Stat. 18(2), 349–367 (2009)

Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7(1), 110–120 (1997)

Saksman, E., Vihola, M.: On the ergodicity of the adaptive Metropolis algorithm on unbounded domains. Ann. Appl. Probab. 20(6), 2178–2203 (2010)

Vihola, M.: Grapham: Graphical models with adaptive random walk Metropolis algorithms. Comput. Stat. Data Anal. 54(1), 49–54 (2010)

Vihola, M.: Can the adaptive Metropolis algorithm collapse without the covariance lower bound? Electron. J. Probab. 16, 45–75 (2011a)

Vihola, M.: On the stability and ergodicity of adaptive scaling Metropolis algorithms. Preprint (2011b). arXiv:0903.4061v3