Robust adaptive Metropolis algorithm with coerced acceptance rate
Tóm tắt
Từ khóa
Tài liệu tham khảo
Andrieu, C., Moulines, É.: On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16(3), 1462–1505 (2006)
Andrieu, C., Robert, C.P.: Controlled MCMC for optimal sampling. Tech. Rep. Ceremade 0125, Université Paris Dauphine (2001)
Andrieu, C., Moulines, É., Volkov, S.: Convergence of stochastic approximation for Lyapunov stable dynamics: a proof from first principles. Technical report (2004)
Andrieu, C., Moulines, É., Priouret, P.: Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44(1), 283–312 (2005)
Atchadé, Y., Fort, G.: Limit theorems for some adaptive MCMC algorithms with subgeometric kernels. Bernoulli 16(1), 116–154 (2010)
Atchadé, Y.F., Rosenthal, J.S.: On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11(5), 815–828 (2005)
Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Applications of Mathematics, vol. 22. Springer, Berlin (1990)
Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, Cambridge (2008)
Dongarra, J.J., Bunch, J.R., Moler, C.B., Stewart, G.W.: LINPACK Users’ Guide. Society for Industrial and Applied Mathematics (1979)
Gelman, A., Roberts, G.O., Gilks, W.R.: Efficient Metropolis jumping rules. In: Bayesian Statistics 5, pp. 599–607. Oxford University Press, Oxford (1996)
Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, Boca Raton (1998)
Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7(2), 223–242 (2001)
Hastie, D.: Toward automatic reversible jump Markov chain Monte Carlo. PhD thesis, University of Bristol (2005)
Huber, P.J.: Robust Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1981)
Jarner, S.F., Hansen, E.: Geometric ergodicity of Metropolis algorithms. Stoch. Process. Appl. 85, 341–361 (2000)
Jarner, S.F., Roberts, G.O.: Convergence of heavy-tailed Monte Carlo Markov chain algorithms. Scand. J. Stat. 34(4), 781–815 (2007)
Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and Applications, 2nd edn. Applications of Mathematics: Stochastic Modelling and Applied Probability, vol. 35. Springer, Berlin (2003)
Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 16(4), 351–367 (2001)
Roberts, G.O., Rosenthal, J.S.: General state space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)
Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44(2), 458–475 (2007)
Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Comput. Graph. Stat. 18(2), 349–367 (2009)
Roberts, G.O., Gelman, A., Gilks, W.R.: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7(1), 110–120 (1997)
Saksman, E., Vihola, M.: On the ergodicity of the adaptive Metropolis algorithm on unbounded domains. Ann. Appl. Probab. 20(6), 2178–2203 (2010)
Vihola, M.: Grapham: Graphical models with adaptive random walk Metropolis algorithms. Comput. Stat. Data Anal. 54(1), 49–54 (2010)
Vihola, M.: Can the adaptive Metropolis algorithm collapse without the covariance lower bound? Electron. J. Probab. 16, 45–75 (2011a)