Robust Multi-image Processing with Optimal Sparse Regularization
Tóm tắt
Sparse modeling can be used to characterize outlier type noise. Thanks to sparse recovery theory, it was shown that 1-norm super-resolution is robust to outliers if enough images are captured. Moreover, sparse modeling of signals is a way to overcome ill-posedness of under-determined problems. This naturally leads to this question: does an added sparsity assumption on the signal improve the robustness to outliers of the 1-norm super-resolution, and if yes, how strong should this assumption be? In this article, we review and extend results of the literature to the robustness to outliers of overdetermined signal recovery problems under sparse regularization, with a convex variational formulation. We then apply them to general random matrices, and show how the regularization parameter acts on the robustness to outliers. Finally, we show that in the case of multi-image processing, the structure of the support of signal and noise must be studied precisely. We show that the sparsity assumption improves robustness if outliers do not overlap with signal jumps, and determine how the regularization parameter can be chosen.
Tài liệu tham khảo
Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Structured sparsity through convex optimization. Stat. Sci. 27(4), 450–468 (2012). doi:10.1214/12-sts394
Benoit, L., Mairal, J., Bach, F., Ponce, J.: Sparse image representation with epitomes. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2913–2920. IEEE (2011). doi:10.1109/cvpr.2011.5995636
Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Prob. 23(3), 969–985 (2007). doi:10.1088/0266-5611/23/3/008
Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C.R. Math. 346(9–10), 589–592 (2008). doi:10.1016/j.crma.2008.03.014
Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005). doi:10.1109/TIT.2005.858979
Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). doi:10.1109/TIT.2006.885507
Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006a). doi:10.1109/TIT.2005.862083
Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006b). doi:10.1002/cpa.20124
Champagnat, F., Le Besnerais, G., Kulcsár, C.: Statistical performance modeling for superresolution: a discrete data-continuous reconstruction framework. J. Opt. Soc. Am. A 26(7), 1730–1746 (2009). doi:10.1364/JOSAA.26.001730
Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. J. Am. Math. Soc. 22(1), 211–231 (2009)
Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010). doi:10.1002/cpa.20303
Delbracio, M., Almansa, A., Morel, J.M., Musé, P.: Subpixel point spread function estimation from two photographs at different distances. SIAM J. Imaging Sci. 5(4), 1234–1260 (2012). doi:10.1137/110848335
Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001). doi:10.1109/18.959265
Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Inf. Theory 15(12), 3736–3745 (2006). doi:10.1109/tip.2006.881969
Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004a). doi:10.1002/ima.20007
Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Inf. Theory 13(10), 1327–1344 (2004). doi:10.1109/TIP.2004.834669
Geiger, D., Liu, T.L., Donahue, M.: Sparse representations for image decompositions. Int. J. Comput. Vision 33(2), 139–156 (1999). doi:10.1023/a%253a1008146126392
He, Y., Yap, K.H., Chen, L., Chau, L.P.: A nonlinear least square technique for simultaneous image registration and super-resolution. IEEE Trans. Inf. Theory 16(11), 2830–2841 (2007). doi:10.1109/TIP.2007.908074
Jenatton, R., Audibert, J.Y., Bach, F.: Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res. 12, 2777–2824 (2011)
Kuppinger, P., Durisi, G., Bolcskei, H.: Uncertainty relations and sparse signal recovery for pairs of general signal sets. IEEE Trans. Inf. Theory 58(1), 263–277 (2012). doi:10.1109/tit.2011.2167215
Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2272–2279. IEEE (2009) doi:10.1109/ICCV.2009.5459452
Mallat, S., Yu, G.: Super-resolution with sparse mixing estimators. IEEE Trans. Image Process. 19(11), 2889–2900 (2010). doi:10.1109/TIP.2010.2049927
Marquina, A., Osher, S.: Image super-resolution by TV-regularization and bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008). doi:10.1007/s10915-008-9214-8
Milanfar, P.: Super-resolution Imaging, vol. 1. CRC Press, Boca Raton (2010)
Mitra, K., Veeraraghavan, A., Chellappa, R.: Analysis of sparse regularization based robust regression approaches. IEEE Trans. Signal Process. 61(5), 1249–1257 (2013). doi:10.1109/tsp.2012.2229992
Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20(1–2), 99–120 (2004). doi:10.1023/B:JMIV.0000011326.88682.e5
Ning, Q., Chen, K., Yi, L., Fan, C., Lu, Y., Wen, J.: Image super-resolution via analysis sparse prior. IEEE Signal Process. Lett. 20(4), 399–402 (2013). doi:10.1109/lsp.2013.2242198
Studer, C., Baraniuk, R.G.: Stable restoration and separation of approximately sparse signals. Appl. Comput. Harmon. Anal. (2013). doi:10.1016/j.acha.2013.08.006
Studer, C., Kuppinger, P., Pope, G., Bolcskei, H.: Recovery of sparsely corrupted signals. IEEE Trans. Inf. Theory 58(5), 3115–3130 (2012). doi:10.1109/tit.2011.2179701
Tartavel, G., Gousseau, Y., & Peyré, G.: Constrained sparse texture synthesis. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 186–197. Springer, Berlin (2013). doi:10.1007/978-3-642-38267-3_16.
Tian, J., Ma, K.K.: A survey on super-resolution imaging. SIViP 5(3), 329–342 (2011). doi:10.1007/s11760-010-0204-6
Traonmilin, Y., Ladjal, S., Almansa, A.: On the amount of regularization for super-resolution interpolation. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 380–384. IEEE (2012)
Traonmilin, Y., Ladjal, S., Almansa, A.: Outlier removal power of the L1-norm super-resolution. In: Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 198–209. Springer, Berlin ( 2013). doi:10.1007/978-3-642-38267-3_17
Vaiter, S., Deledalle, C.A., Peyré, G., Dossal, C., Fadili, J.: Local behavior of sparse analysis regularization: applications to risk estimation. Appl. Comput. Harmon. Anal. (2012). doi:10.1016/j.acha.2012.11.006
Yap, K.H., He, Y., Tian, Y., Chau, L.P.: A nonlinear -norm approach for joint image registration and super-resolution. IEEE Signal Process. Lett. 16(11), 981–984 (2009). doi:10.1109/LSP.2009.2028106
Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481–2499 (2012). doi:10.1109/tip.2011.2176743
Yu, N., Qiu, T., Ren, F.: Denoising for multiple image copies through joint sparse representation. J. Math. Imaging Vision 45(1), 46–54 (2013). doi:10.1007/s10851-012-0343-1