Robust H ∞ synchronization of chaotic systems with input saturation and time-varying delay
Tóm tắt
This paper investigates drive-response robust synchronization of chaotic systems with disturbance, time-varying delay and input saturation via state feedback control. Sufficient conditions for achieving the synchronization of two chaotic systems are derived on the basis of the Lyapunov theory and the linear matrix inequality (LMI) technique, which is not only to guarantee the asymptotic synchronization but also to attenuate the effects of the perturbation on the overall error system to a prescribed level. Finally, an illustrative numerical simulation is also given to demonstrate the effectiveness of the proposed scheme.
Tài liệu tham khảo
Lorenz EN: Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20: 130.
Chen GR, Ueta T: Yet another chaotic attractor. Int. J. Bifurc. Chaos 1999, 9: 1465.
Matsumoto T, Chua LO, Kobayashi K: Hyperchaos: laboratory experiment and numerical confirmation. IEEE Trans. Circuits Syst. 1986, 33: 1143.
Li Y, Tang SK, Chen G: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 2005, 15: 3367.
Yan Z: Controlling hyperchaos in the new hyperchaotic Chen system. Appl. Math. Comput. 2005, 168: 1239.
Rafikov M, Balthazar JM: On an optimal control design for system. Phys. Lett. A 2004, 333: 241.
Ott E, Grebogi C, Yorke JA: Controlling chaos. Phys. Rev. Lett. 1990, 64: 1196.
Pecora L, Carrol T: Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64: 821.
Wu X, Lu J: Parameter identification and backstepping control of uncertain L system. Chaos Solitons Fractals 2003, 18: 721.
Liao TL, Tsai SH: Adaptive synchronization of chaotic systems and its application to secure communication. Chaos Solitons Fractals 2000, 11: 1387.
Yau HT, Chen C: Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems. Chaos Solitons Fractals 2006, 30: 709.
Chen GR, Lu JH: Dynamical Analysis, Control and Synchronization of Lorenz Families. Science Press, Beijing; 2003. (in Chinese)
Wu X, Zhao Y: Frequency domain criterion for chaos synchronization of Lur’s systems via linear state error feedback control. Int. J. Bifurc. Chaos 2006, 15: 1445.
Cao JD, Li HX, Ho DWC: Synchronization criteria of Lur’s systems with time-delay feedback control. Chaos Solitons Fractals 2005, 23: 1285.
Juan Gonzalo BR, Chen G, Leang SS: Fuzzy chaos synchronization via sampled driving signals. Int. J. Bifurc. Chaos 2004, 14: 2721.
Liao TL: Observer-based approach for controlling chaotic systems. Phys. Rev. E 1998, 57: 1604.
Chen G, Dong X: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore; 1998.
Hendrik R: Controlling chaotic systems with multiple strange attractors. Phys. Lett. A 2002, 300: 182.
Sun JT: Some global synchronization criteria for coupled delay-systems via unidirectional linear error feedback approach. Chaos Solitons Fractals 2004, 19: 789.
Aghababa MP, Heydari A: Chaos synchronization between two different chaotic systems with uncertainties, external disturbances,unknown parameters and input nonlinearities. Appl. Math. Model. 2012, 36: 1639.
Jawaada W, Noorani MSM: Robust active sliding mode anti-synchronization of hyperchaotic systems with uncertainties and external disturbances. Nonlinear Anal., Real World Appl. 2012, 13: 2403.
Wang B, Shi P, Karimi HR, Song Y, Wang J:Robust H ∞ synchronization of a hyper-chaotic system with disturbance input. Nonlinear Anal., Real World Appl. 2013, 14: 1487.
Mackey M, Glass L: Oscillation and chaos in physiological control systems. Science 1977, 197: 287.
Pourdehi S, Karimaghaee P, Karimipour D: Adaptive controller design for lag-synchronization of two non-identical time-delayed chaotic systems with unknown parameters. Phys. Lett. A 2011, 375: 1769.
Cheng CK, Kuo HH, Hou YY, Hwang CC, Liao TL: Robust chaos synchronization of noise-perturbed chaotic systems with multiple-time-delays. Phys. Lett. A 2008, 387: 3093.
He WL, Qian F, Cao JD, Han QL: Impulsive synchronization of two nonidentical chaotic systems with time-varying delay. Phys. Lett. A 2011, 375: 498.
Yau HT, Chen CL: Chaos control of Lorenz system using adaptive controller with input saturation. Chaos Solitons Fractals 2007, 34: 1567.
Rehan M: Synchronization and anti-synchronization of chaotic oscillators under input saturation. Appl. Math. Model. 2013, 37: 6829.
Rehan M, Khan AQ, Abid M, Iqbal N, Hussain B: Anti-wind-based dynamic controller synthesis for nonlinear systems under input saturation. Appl. Math. Comput. 2013, 220: 382.
Rehan M, Hong KS: Decoupled-architecture-based nonlinear anti-windup design for a class of nonlinear systems. Nonlinear Dyn. 2013, 73: 1955.
Tarbouriech S, Prieur C: Stability analysis and stabilization of systems presenting nested saturations. IEEE Trans. Autom. Control 2006, 51: 1364.
Boyd S: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia; 1994.
Horn R, Johnson C: Matrix Analysis. Cambridge University Press, Cambridge; 1985.