Robust Finite-time H∞ Control of Linear Time-varying Delay Systems with Bounded Control via Riccati Equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, G. De Tommas. Finite-time Stability and Control, New York, USA: Springer, 2014.
Y. Q. Wu, C. L. Zhu, Z. C. Zhang. Finite-time stabilization of a general class of nonholonomic dynamic systems via terminal sliding mode. International Journal of Automation and Computing, vol. 13, no. 6, pp. 585–595, 2016.
E. Moulay, M. Dambrine, N. Yeganefar, W. Perruquetti. Finite-time stability and stabilization of time-delay systems. Systems & Control Letters, vol. 57, no. 7, pp. 561–566, 2008.
H. Liu, P. Shi, H. R. Karimi, M. Chadli. Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay. International Journal of Systems Science, vol. 47, no. 6, pp. 1433–1444, 2016.
Y. N. Sun, S. L. Liu, Z. R. Xiang. Robust finite-time H ∞ control for uncertain switched neutral systems with mixed delays. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 226, no. 5, pp. 638–650, 2012.
L. Van Hien, D. T. Son. Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays. Applied Mathematics and Computation, vol. 251, pp. 14–23, 2015.
P. Dorato P. Short time stability in linear time-varying systems. In Proceedings of IRE International Convention Record, IEEE, New York, USA, vol. 4, pp. 83–87, 1961.
K. M. Zhou, P. P. Khargonekar. An algebraic Riccati equation approach to H ∞ optimization. Systems & Control Letters, vol. 11, no. 2, pp. 85–91, 1998.
Z. R. Xiang, Y. N. Sun, M. S. Mahmoud. Robust finitetime H ∞ control for a class of uncertain switched neutral systems. Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1766–1778, 2012.
W. M. Xiang, J. Xiao. H ∞ finite-time control for switched nonlinear discrete-time systems with norm-bounded disturbance. Journal of the Franklin Institute, vol. 348, no. 2, pp. 331–352, 2011.
P. Wang, W. W. Sun. Adaptive H ∞ control for nonlinear Hamiltonian systems with time delay and parametric uncertainties. International Journal of Automation and Computing, vol. 11, no. 4, 368–376, 2014.
T. Ba¸sar, P. Bernhard. H ∞-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, 2nd ed., Basel, USA: Birkhauser, 1995.
P. Balasubramaniam, T. Senthilkumar. Delay-dependent robust stabilization and H ∞ control for uncertain stochastic T-S fuzzy systems with discrete interval and distributed time-varying delays. International Journal of Automation and Computing, vol. 10, no. 1, pp. 18–31, 2013.
P. Shi, Y. Q. Zhang, M. Chadli, R. K. Agarwal. Mixed H ∞ and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 4, pp. 903–909, 2016.
Z. R. Xiang, C. H. Qiao, M. S. Mahmoud. Finite-time analysis and H ∞ control for switched stochastic systems. Journal of the Franklin Institute, vol. 349, no. 3, pp. 915–927, 2012.
Z. Xiang, S. Liu, M. S. Mahmoud. Robust H ∞ reliable control for uncertain switched neutral systems with distributed delays. IMA Journal Mathematical Control and Information, vol. 32, pp. 1–19, 2015.
H. Liu, Y. Shen, X. D. Zhao. Delay-dependent observerbased H ∞ finite-time control for switched systems with time-varying delay. Nonlinear Analysis: Hybrid Systems, vol. 6, no. 3, pp. 885–898, 2012.
H. Bounit, H. Hammouri. Bounded feedback stabilization and global separation principle of distributed parameter systems. IEEE Transactions on Automatic Control, vol. 42, no. 3, pp. 414–419, 1997.
M. Slemrod. Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control. Mathematics of Control, Signals and Systems, vol. 22, no. 3, pp. 265–285, 1989.
H. J. Sussmann, E. D. Sontag, Y. Yang. A general result on the stabilization of linear systems using bounded controls. IEEE Transactions on Automatic Control, vol. 39, no. 12, pp. 2411–2425, 1994.
M. L. Corradini, A. Cristofaro, F. Giannoni, G. Orlando. Control Systems with Saturating Inputs: Analysis Tools and Advanced Design, New York, USA: Springer, 2012.
B. Wang, J. Y. Zhai, S. M. Fei. Output feedback tracking control for a class of switched nonlinear systems with time-varying delay. International Journal of Automation and Computing, vol. 11, no. 6, pp. 605–612, 2014.
V. N. Phat, P. Niamsup. Stabilization of linear nonautonomous systems with norm-bounded controls. Journal of Optimization Theory and Applications, vol. 131, no. 1, pp. 135–149, 2006.
Y. Guo, Y. Yao, S. C. Wang, B. Q. Yang, K. Liu, X. Zhao. Finite-time control with H ∞ constraints of linear time-invariant and time-varying systems. Journal of Control Theory and Applications, vol. 11, no. 2, pp. 165–172, 2013.
G. Garcia, S. Tarbouriech, J. Bernussou. Finite-time stabilization of linear time-varying continuous systems. IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 364–369, 2009.
J. J. Hui, H. X. Zhang, X. Y. Kong. Delay-dependent nonfragile H ∞ control for linear systems with interval timevarying delay. International Journal of Automation and Computing, vol. 12, no. 1, pp. 109–116, 2015.
F. Amato, R. Ambrosino, C. Cosentino, G. De Tommasi. Input-output finite time stabilization of linear systems. Automatica, vol. 46, no. 9, pp. 1558–1562, 2010.
H. Du, C. Qian, M. T. Frye, S. Li. Global finite-time stabilisation using bounded feedback for a class of non-linear systems. IET Control Theory & Applications, vol. 6, no. 14, pp. 2326–2336, 2012.
K. Q. Gu, V. L. Kharitonov, J. Chen. Stability of Time- Delay System, Boston, USA: Birkhauser, 2003.
A. J. Laub. A Schur method for solving algebraic Riccati equations. IEEE Transactions on Automatic Control, vol. 24, no. 6, pp. 913–921, 1979.
J. S. Gibson. Linear-quadratic optimal control of hereditary differential systems: infinite dimensional Riccati equations and numerical approximations. SIAM Journal on Control and Optimization, vol. 21, no. 1, pp. 95–139, 1983.
W. T. Reid. Riccati Differential Equations, Volume 86, New York, USA: Academic Press, 1972.