Robust Estimator of Conditional Tail Expectation of Pareto-Type Distribution

Journal of Statistical Theory and Practice - Tập 15 - Trang 1-12 - 2021
Dalal Lala Bouali1,2, Fatah Benatia1, Brahim Brahimi1, Christophe Chesneau2
1Laboratory of Applied Mathematics, Mohamed Khider University of Biskra, Biskra, Algeria
2LMNO, University of Caen-Normandie , Caen , France

Tóm tắt

In this paper, we use the extreme value index estimator, called the t-Hill, to derive a robust estimator of conditional tail expectation (CTE) in the case of heavy-tailed losses. The CTE is rapidly turning into the favored measure for statutory assessment of the balance sheet at whatever point true stochastic techniques are utilized to fix the provisions for risks. Under the extreme value methodology, we prove the asymptotic normality of the robust nonparametric conditional tail expectation estimator when the loss variable follows any distribution with infinite second moment. In addition, the numerical performance of our new estimator is studied and compared to a well-established estimator, with favorable results.

Tài liệu tham khảo

Beran J, Schell D, Stehlík M (2014) The harmonic moment tail index estimator: asymptotic distribution and robustness. Ann Inst Stat Math 66(1):193–220 Brahimi B, Kenioua Z (2016) Robust estimator of distortion risk premiums for heavy-tailed losses. Afrika Stat 11(1):869–882 Brazauskas V, Jones BL, Puri ML, Zitikis R (2008) Estimating conditional tail expectation with actuarial applications in view. J Stat Plan Inference 138(11):3590–3604 Csörgő M, Csörgő S, Horváth L, Mason DM (1986) Weighted empirical and quantile processes. Ann Prob 14:31–85 Deme E, Girard S, Guillou A (2013) Reduced-bias estimator of the proportional hazard premium for heavy-tailed distributions. Insur: Math Econ 52(3):550–559 Denuit M, Dhaene J, Goovaerts M, Kaas R (2006) Actuarial theory for dependent risks: measures, orders and models. Wiley, Hoboken Fabián Z, and Stehlík M (2009) On robust and distribution sensitive Hill like method. IFAS research report, 43 Geluk J, De Haan L, Resnick S, Stărică C (1997) Second-order regular variation, convolution and the central limit theorem. Stoch Process Appl 69(2):139–159 de Haan L, Resnick S (1996) Second-order regular variation and rates of convergence in extreme-value theory. Ann Probab 24:97–124 Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3(5):1163–1174 Jordanova P, Fabián Z, Hermann P, Str̆elec L, Rivera A, Girard S, Torres S, Stehlík M (2016) Weak properties and robustness of t-Hill estimators. Extremes 19(4):591–626 Jordanova PK, Pancheva EI (2012) Weak asymptotic results for t-Hill estimator. Comptes rendus de l’académie bulgare des sciences 65(12):1649–1656 Juárez SF, Schucany WR (2004) Robust and efficient estimation for the generalized Pareto distribution. Extremes 7(3):237–251 Kim M, Lee S (2008) Estimation of a tail index based on minimum density power divergence. J Multivar Anal 99(10):2453–2471 Necir A, Meraghni D, Meddi F (2007) Statistical estimate of the proportional hazard premium of loss. Scand Actuarial J 2007(3):147–161 Necir A, Rassoul A, Zitikis R (2010) Estimating the conditional tail expectation in the case of heavy-tailed losses. J Probab Stat, ID 596839, 17 pp Peng L, Welsh AH (2001) Robust estimation of the generalized Pareto distribution. Extremes 4(1):53–65 Reiss R-D, Thomas M (2007) Statistical analysis of extreme values with applications to insurance, finance, hydrology and other fields, 3rd edn. Birkhauser Verlag, Basel Stehlík M, Fabián Z, Střelec L (2012) Small sample robust testing for normality against Pareto tails. Commun Stat-Simul Comput 41(7):1167–1194 Stehlík M, Potockỳ R, Waldl H, Fabián Z (2010) On the favorable estimation for fitting heavy tailed data. Comput Stat 25(3):485–503 Vandewalle B, Beirlant J, Christmann A, Hubert M (2007) A robust estimator for the tail index of Pareto-type distributions. Comput Stat Data Anal 51(12):6252–6268 Weissman I (1978) Estimation of parameters and large quantiles based on the k largest observations. J Am Stat Assoc 73(364):812–815