Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation

Dong Hoon Lee1, Jeongho Kim1, Daewoo Lee1
1Pusan National University, Busan 46241, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mohan A, Poobal S (2017) Crack detection using image processing: a critical review and analysis. Alexandria Eng J 57:787–798

Aboudi J (1987) Stiffness reduction of cracked solids. Eng Fract Mech 26(5):637–650

Eich M, Vogele T (2011) Design and Control of a lightweight magnetic climbing robot for vessel inspection. In: Mediterranean conference on control and automation

Lim RS, La MH, Shan Z, Sheng W (2011) Developing a crack inspection robot for bridge maintenance. In: International conference on robotics and automation

Metni N, Hamel T (2007) A UAV for bridge inspection: visual servoing control law with orientation limits. Automat Constr 17(1):3–10

Wang P, Huang H (2010) Comparison analysis on present image-based crack detection methods in concrete structures. In: 3rd International congress on image and signal processing

Ziou D, Tabbone S (1998) Edge detection techniques-an overview. Pattern Recogn Image Anal 8(4):537–559

Cha Y-J, Choi W, Buyukozturk O (2017) Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil Infrastruct Eng 32(5):361–378

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems, vol. 1, pp 1097–1105

Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556

Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. arXiv Preprint arXiv:1506.01497

Long J, Shelhamer E, Darrell T (2014) Fully convolutional networks for semantic segmentation. arXiv preprint arXiv:1411.4038v2

Zhang L, Yang F, Zhang YD, Zhu YJ (2016) Road crack detection using deep convolutional neural network. In: IEEE international conference on image processing (ICIP), pp 3708–3712

Chen F-C, Jahanshahi MR (2018) NB-CNN: deep learning-based crack detection using convolutional neural network and naïve Bayes data fusion. IEEE Trans Ind Electron 65(5):4392–4400

Wang N, Zhao Q, Li S, Zhao X, Zhao P (2018) Damage classification for masonry historic structures using convolutional neural networks based on still images. Computer-Aided Civil Infrastruct Eng 33:1073–1089

Yang X, Li H, Yu Y, Luo X, Huang T (2018) Automatic pixel-level crack detection and measurement using fully convolutional network. Computer-Aided Civil Infrastruct Eng 33:1090–1109

Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). arXiv Preprint arXiv:1511.07289

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv Preprint arXiv:1502.03167

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

Maybeck PS (1979) Stochastic models estimation and control. Academic Press, Cambridge

Lin TY, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick LC, Dollar P (2014) Microsoft COCO: common object in context. arXiv Preprint arXiv:1405.0312

Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? arXiv Preprint arXiv:1411.1792

Kingma DP, Ba J (2014) ADAM: a method for stochastic optimization. arXiv Preprint arXiv:1412.6980