Theo dõi robot trong SLAM với bộ lọc Kalman không mùi Masreliez-Martin

Ming Tang1, Zhe Chen1, Fuliang Yin1
1School of Information and Communication Engineering, Dalian University of Technology (DUT), Dalian, China

Tóm tắt

Định vị đồng thời và lập bản đồ (SLAM) là một chủ đề quan trọng trong robot thông minh. Trong bài báo này, một thuật toán theo dõi robot trong SLAM với bộ lọc Kalman không mùi Masreliez-Martin (MMUKF) được đề xuất. Mô hình động học của robot dựa trên các đặc điểm của SLAM được sử dụng làm phương trình trạng thái để mô hình hóa chuyển động của robot, và các phương trình đo lường được suy diễn bằng cách tuyến tính hóa mô hình chuyển động. Tiếp theo, hiệp phương sai của tiếng ồn quy trình được ước lượng với một yếu tố thích nghi để cải thiện hiệu suất theo dõi trong MMUKF. Cuối cùng, MMUKF được sử dụng để ước lượng vị trí của robot và các đối tượng chú thích. Thuật toán đề xuất có thể hoàn thành việc theo dõi robot với độ chính xác tốt, và đạt được ước lượng trạng thái đáng tin cậy trong SLAM. Kết quả mô phỏng cho thấy tính hợp lệ của thuật toán đề xuất.

Từ khóa

#SLAM #theo dõi robot #bộ lọc Kalman không mùi Masreliez-Martin #mô hình động học #ước lượng trạng thái

Tài liệu tham khảo

M. Mustafa, A. Stancu, N. Delanoue, and E. Codres, “Guaranteed SLAM-An interval approach,” Robotics and Autonomous Systems, vol. 100, pp. 160–170, February 2018. D. Amin and S. Govilkar, “Comparative study of augmented reality SDKs,” International Journal on Computational Science and Applications, vol. 5, no. 1, pp. 11–26, February 2015. H. Alazki, E. Herná ndez, J. M. Ibarra, and A. Poznyak, “Attractive ellipsoid method controller under noised measurements for SLAM,” International Journal of Control, Automation and Systems, vol. 15, no. 6, pp. 2764–2775, December 2017. L. Pan, J. Cheng, and Q. Zhang, “UFSM VO: Stereo odometry based on uniformly feature selection and strictly correspondence matching,” Proc. of 25th IEEE International Conference on Image Processing (ICIP), pp. 4148–4152, October 2018. F. Mutz, L. P. Veronese, and T. Oliveira-Santos, “Largescale mapping in complex field scenarios using an autonomous car,” Expert Systems with Applications, vol. 46, pp. 439–462, March 2016. M. Abouzahir, A. Elouardi, R. Latif, S. Bouaziz, and A. Tajer, “Embedding SLAM algorithms: Has it come of age?,” Robotics and Autonomous Systems, vol. 100, pp. 14–26, February 2018. Y. He, C. Song, P. Yang, and X. Lei, “Bio-inspired guiding strategy for robot seeking intermittent information source,” 13th International Bhurban Conference on Applied Sciences and Technology (IBCAST), pp. 161–166, January 2016. G. Piumatti, F. Lamberti, and A. Sanna, “Robust robot tracking for next-generation collaborative robotics-based gaming environments,” IEEE Trans. on Emerging Topics in Computing, November 2017. J. Tang, B. Yu, S. Liu, Z. Zhang, W. Fang, and Y. Zhang, “PI-SoC: Heterogeneous SoC architecture for visual inertial SLAM applications,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8302–8307, October 2018. J. Aulinas, Y. R. Petillot, J. Salvi, and X. Llado, “The SLAM problem: A survey,” CCIA, vol. 184, no. 1, pp. 363–371, 2008. R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in robotics,” Machine Intelligence and Pattern Recognition, vol. 5, no. 5, pp. 435–461, 1988. P. Moutarlier and R. Chatila, “An experimental system for incremental environment modelling by an autonomous mobile robot,” Proc. of International Symposium on Experimental Robotics I, vol. 139, pp. 327–346, 1989. A. J. Davison, “Real-time simultaneous localisation and mapping with a single camera,” Proc. of IEEE International Conference on Computer Vision, pp. 1403–1410, October 2003. J. Andrade- Cetto, T. Vidal-Calleja, and A. Sanfeliu, “Unscented transformation of vehicle states in SLAM,” Proc. of IEEE International Conference on Robotics and Automation, pp. 323–328, April 2005. R. Martinez-Cantin and J. A. Castellanos, “Unscented SLAM for large-scale outdoor environments,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3427–3432, August 2005. H. K. Nguyen and M. Wongsaisuwan, “A study on unscented SLAM with path planning algorithm integration,” Proc. of 11th International Conference on Electrical Engineering/ Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–5, May 2014. F. Zhang, X. Zhou, X. Chen, and R. Liu, “Particle filter for underwater bearings-only passive target tracking,” IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, vol. 2, pp. 847–851, December 2008. R. van der Merwe and E. A. Wan, “The square-root unscented Kalman filter for state and parameter-estimation,” Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3461–3464, May 2001. S. Holmes, G. Klein, and D. W. Murray, “A square root unscented Kalman filter for visual mono SLAM,” Proc. of IEEE International Conference on Robotics and Automation, Pasadena, pp. 3710–3716, May 2008. L. Zhao, L. Ge, K. Wang, and R. Li, “A hybrid SLAM method for service robots in indoor environment,” Proc. of The 30th Chinese Control Conference, pp. 4034–4039, July 2011. A. Al-Hussein and A. Haldar, “Unscented Kalman filter with unknown input and weighted global iteration for health assessment of large structural systems,” Structural Control and Health Monitoring, vol. 23, no.1, pp. 156–175, January 2016. A. Chatterjee and F. Matsuno, “A neuro-fuzzy assisted extended Kalman filter-based approach for simultaneous localization and mapping (SLAM) problems,” IEEE Trans. on Fuzzy Systems, vol. 15, no. 5, pp. 984–997, October 2007. T. Lee, C. Kim, and D. D. Cho, “A monocular vision sensor-based efficient SLAM method for indoor service robots,” IEEE Trans. on Industrial Electronics, vol. 66, no. 1, pp. 318–328, April 2018. B. Balasuriya, B. Chathuranga, B. Jayasundara, N. Napagoda, S. Kumarawadu, D. Chandima, and A. Jayasekara, “Outdoor robot navigation using gmapping based SLAM algorithm,” Proc. of Moratuwa Engineering Research Conference (MERCon), pp. 403–408, April 2016. J. Kim and S. Sukkarieh, “Real-time implementation of airborne inertial-SLAM,” Robotics and Autonomous Systems, vol. 55, no. 1, pp. 62–71, January 2007. A. Palomer, P. Ridao, and D. Ribas, “Multibeam 3D underwater SLAM with probabilistic registration,” Sensors, vol. 16, no. 4, pp. 1–23, January 2016. P. Du, J. Han, J. Wang, G. Wang, D. Jing, X. Wang, and F. Qu, “View-based underwater SLAM using a stereo camera,” OCEANS 2017-Aberdeen, pp. 1–6, June 2017. N. Ammann and L. Mayo, “Undelayed initialization of inverse depth parameterized landmarks in UKF-SLAM with error state formulation,” Proc. of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 918–923, July 2018. T. Nemoto, K. Onodera, R. E. Mohan, M. Iwase, and K. Wood, “An application of the simultaneous localization and mapping (SLAM) method based on the unscented Kalman filter (UKF) to a reconfigurable quadruped robot with crawling locomotion,” Proc. of International Conference on Reconfigurable Mechanisms and Robots (ReMAR), pp. 1–8, June 2018. J. H. Yoon, D. Y. Kim, and V. Shin, “Window length selection in linear receding horizon filtering,” Proc. of International Conference on Control, Automation and Systems, pp. 2463–2467, October 2008. W. Li, S. Sun, Y. Jia, and J. Du, “Robust unscented Kalman filter with adaptation of process and measurement noise covariances,” Digital Signal Processing, vol. 48, pp. 93–103, January 2016. Y. Wang, X. Lin, M. Zhu, and Z. Bai, “Robust estimation using the Huber function with a data-dependent tuning constant,” Journal of Computational and Graphical Statistics, vol. 16, no. 2, pp. 468–481, 2007. C. Hajiyev and H. E. Soken, “Robust adaptive unscented Kalman filter for attitude estimation of pico satellites,” International Journal of Adaptive Control and Signal Processing, vol. 28, no. 2, pp. 107–120, February 2014. “Matlab Utilities},” [Online]. Available: http://www.acfr.usyd.edu.au/homepages/academic/tbailey/software/software.html