River‐tide dynamics: Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary

Journal of Geophysical Research: Oceans - Tập 120 Số 5 - Trang 3499-3521 - 2015
Leicheng Guo1,2, Mick van der Wegen3,2, David A. Jay4, Pascal Matte5, Zheng Bing Wang6,3,1, Dano Roelvink6,3,2, Qing He1
1State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
2UNESCO-IHE, Delft, Netherlands
3Deltares, Delft, Netherlands
4Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
5Centre Eau Terre Environment, Institut National de la Recherche Scientifique, Quebec City, Quebec, Canada
6Civil Engineering and Geosciences Faculty, Delft University of Technology, Delft, Netherlands

Tóm tắt

AbstractRiver‐tide dynamics remain poorly understood, in part because conventional harmonic analysis (HA) does not cope effectively with nonstationary signals. To explore nonstationary behavior of river tides and the modulation effects of river discharge, this work analyzes tidal signals in the Yangtze River estuary using both HA in a nonstationary mode and continuous wavelet transforms (CWT). The Yangtze is an excellent natural laboratory to analyze river tides because of its high and variable flow, its length, and the fact that there are do dams or reflecting barriers within the tidal part of the system. Analysis of tidal frequencies by CWT and analysis of subtidal water level and tidal ranges reveal a broad range of subtidal variations over fortnightly, monthly, semiannual, and annual frequencies driven by subtidal variations in friction and by variable river discharges. We employ HA in a nonstationary mode (NSHA) by segregating data within defined flow ranges into separate analyses. NSHA quantifies the decay of the principal tides and the modulation of M4 tide with increasing river discharges. M4 amplitudes decrease far upriver (landward portion of the estuary) and conversely increase close to the ocean as river discharge increases. The fortnightly frequencies reach an amplitude maximum upriver of that for over tide frequencies, due to the longer wavelength of the fortnightly constituents. These methods and findings should be applicable to large tidal rivers globally and have broad implications regarding management of navigation channels and ecosystems in tidal rivers.

Từ khóa


Tài liệu tham khảo

10.1111/j.1365-246X.1985.tb05138.x

10.1006/ecss.1993.1078

10.1016/0272-7714(85)90096-4

10.1029/2009WR008167

10.1061/(ASCE)HY.1943-7900.0000594

10.1098/rsta.1891.0005

10.1137/1.9781611970104

Dean R. G., 1966, Estuary and Coastline Hydrodynamics, 197

10.1029/2004JC002463

10.1098/rspa.1921.0088

Dronkers J. J., 1964, Tidal Computations in Rivers and Coastal Waters, 219

10.1016/0077-7579(86)90036-0

10.1146/annurev.fl.24.010192.002143

10.1006/ecss.2000.0586

Foreman M. G. G., 1977, Manual for tidal heights analysis and prediction, Pac. Mar. Sci. Rep., 77, 58 pp

10.1029/CE047p0203

10.1175/2008JTECHO615.1

10.1016/0272-7714(88)90082-0

10.1029/93JC03219

10.1029/1999JC900025

10.1007/s10236-005-0003-8

10.1016/j.quaint.2012.11.023

Godin G., 1972, The Analysis of Tides, 264

10.1080/07055900.1983.9649168

10.1061/(ASCE)0733-950X(1985)111:2(257)

Godin G., 1991, Tidal Hydrodynamics, 379

10.1006/ecss.1998.0422

10.5194/npg-11-561-2004

10.1002/2014JF003110

10.1029/2009WR007791

10.1016/j.jhydrol.2004.02.012

10.1029/91JC01633

10.1029/96JC00496

10.1016/S0278-4343(99)00036-9

10.1007/s10236-003-0042-y

10.1016/0079-6611(90)90006-N

10.1007/s12237.014-8919-0

10.1029/2002JC001382

10.1029/2003JC001829

10.1029/1998JC900015

10.1029/JC083iC09p04717

10.1080/07055900.1979.9649064

LeBlond P. H., 1991, Tides and their interactions with other oceanographic phenomena in shallow water (review), 357

10.1016/j.csr.2008.04.011

Provost C., 1991, Tidal Hydrodynamics, 269

10.1175/JPO2804.1

10.1357/002224013807343461

10.1016/0025-3227(88)90137-5

10.1175/JTECH-D-12-00016.1

10.1002/2014JC009791

Parker B. B.(1984) Frictional effects on tidal dynamics of shallow estuary PhD dissertation 291 pp. Johns Hopkins Univ. Press Baltimore Md.

Parker B. B., 1991, Tidal Hydrodynamics, 237

10.1016/S0098-3004(02)00013-4

Pugh D. T., 1987, Tides, Surges and Mean Sea‐Level, 472

10.1002/2013JB010830

10.1002/jgrc.20297

Savenije H. H. G., 2005, Salinity and Tides in Alluvial Estuaries

10.1029/2007JC004408

Shen H. T., 2003, Saltwater Intrusion in the Changjiang Estuary

10.1016/j.ecss.2013.09.016

Simon B., 1991, Tidal Hydrodynamics, 725

10.1029/2011JC007270

10.1016/0272-7714(85)90097-6

Speer P. E., 1991, Tidal Hydrodynamics, 321

State Oceanic Administration of People's Republic of China (SOA), 2013, China Sea Level Bulletins 2013

10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

10.1007/s10236-011-0453-0

Walters R. A., 1991, Tidal Hydrodynamics, 297

Wang Z. B. C.Jeuken andH. J.deVriend(1999) Tidal asymmetry and residual sediment transport in estuaries WL Hydraul. Rep. Z2749 66pp.

Yun C. X., 2004, Recent Evolution of the Yangtze Estuary and Its Mechanisms

10.1175/JPO-D-13-0266.1

Zhang E. F., 2003, Water discharge changes of the Changjiang River downstream Datong during dry season, J. Geogr. Res., 13, 355

10.1016/j.pce.2011.05.002

Zhu Q. Y., 2008, Study on representative vertical method for tidal discharge processing of Xuliujing gauging station in the Yangtze River Estuary [in Chinese], J. China Hydrol., 28, 61