River network delineation from Sentinel-1 SAR data

Christopher B. Obida1, George A. Blackburn1, James D. Whyatt1, Kirk T. Semple1
1Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom

Tài liệu tham khảo

Allen, 2014, Patterns of river width and surface area newly revealed by the satellite-derived North American River Width (NARWidth) dataset, Geophys. Res. Lett., 42, 1 Anejionu, 2015, Hydrocarbon pollution in the Niger Delta: Geographies of impacts and appraisal of lapses in extant legal framework, Resour. Policy, 45, 65, 10.1016/j.resourpol.2015.03.012 Anifowose, 2012, Attacks on oil transport pipelines in Nigeria: a quantitative exploration and possible explanation of observed patterns, Appl. Geogr., 10.1016/j.apgeog.2011.07.012 Ardhuin, 2017, Measuring ocean waves in sea ice using SAR imagery: a quasi-deterministic approach evaluated with Sentinel-1 and in situ data, Remote Sens. Environ., 189, 211, 10.1016/j.rse.2016.11.024 Bittner, 2017, Diversity in volunteered geographic information: comparing OpenStreetMap and Wikimapia in Jerusalem, GeoJournal, 82, 887, 10.1007/s10708-016-9721-3 Bolanos, 2016, Operational surface water detection and monitoring using Radarsat 2, Remote Sens., 8 Capó, 2017, An efficient approximation to the K-means clustering for massive data, Knowl.-Based Syst., 117, 56, 10.1016/j.knosys.2016.06.031 Castronova, 2014, A hierarchical network-based algorithm for multi-scale watershed delineation, Comput. Geosci., 72, 156, 10.1016/j.cageo.2014.07.014 Cho, 2011, International Journal of Remote sensing Morphology-based approaches for detecting stream channels from ALSM data Morphology-based approaches for detecting stream channels from ALSM data, Int. J. Remote Sens., 32, 9571, 10.1080/01431161.2011.566896 Domeneghetti, 2014, The use of remote sensing-derived water surface data for hydraulic model calibration, Remote Sens. Environ., 149, 130, 10.1016/j.rse.2014.04.007 Ekeu-Wei, 2018, Applications of open-access remotely sensed data for flood modelling and mapping in developing regions, Hydrology, 10.3390/hydrology5030039 Emmanuel, 2007, The Plankton and fishes of a tropical creek in South-Western Nigeria, Turk. J. Fish. Aquat. Sci., 113, 105 Felipe De Almeida Furtado, 2016, Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands, Remote Sens. Environ., 174, 212, 10.1016/j.rse.2015.12.013 Feyisa, 2014, Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery, Remote Sens. Environ., 140, 23, 10.1016/j.rse.2013.08.029 Fu, 2017, Comparison of object-based and pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data, Ecol. Indic., 73, 105, 10.1016/j.ecolind.2016.09.029 Garneau, 2017, Modelling trace metal transfer in large rivers under dynamic hydrology: a coupled hydrodynamic and chemical equilibrium model, Environ. Model. Softw., 89, 77, 10.1016/j.envsoft.2016.11.018 Goodchild, 1997, A simple positional accuracy measure for linear features, Int. J. Geogr. Inf. Sci., 11, 299, 10.1080/136588197242419 Graham, 2015, Towards a study of information geographies: (im)mutable augmentations and a mapping of the geographies of information, Geo Geogr. Environ., 2, 88, 10.1002/geo2.8 Gülgen, 2017, Geocarto International A stream ordering approach based on network analysis operations, Geocarto Int., 32, 322, 10.1080/10106049.2016.1140821 Haas, 2017, Sentinel-1A SAR and sentinel-2A MSI data fusion for urban ecosystem service mapping, Remote Sens. Appl. Soc. Environ., 8, 41 Haddeland, 2014, Global water resources affected by human interventions and climate change, Proc. Natl. Acad. Sci. U. S. A., 111, 3251, 10.1073/pnas.1222475110 Haklay, 2010, How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets, Environ. Plan. B Plan. Des., 37, 682, 10.1068/b35097 Hamada, 2016, Mapping ephemeral stream networks in desert environments using very-high-spatial-resolution multispectral remote sensing, J. Arid Environ., 130, 40, 10.1016/j.jaridenv.2016.03.005 Imperatore, 2017, Effect of the vegetation fire on backscattering: an investigation based on Sentinel-1 observations, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 4478, 10.1109/JSTARS.2017.2717039 Isikdogan, 2017, RivaMap: an automated river analysis and mapping engine, Remote Sens. Environ., 202, 88, 10.1016/j.rse.2017.03.044 Jain, 2010, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett., 31, 651, 10.1016/j.patrec.2009.09.011 Jiang, 2011, GIS stream network analysis for Huaihe River Basin of China, Procedia Environ. Sci., 10, 1553, 10.1016/j.proenv.2011.09.247 Kadafa, 2012, Oil exploration and spillage in the Niger Delta of Nigeria, Civ. Environ. Res., 2, 2222 Kennedy, 2009, Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects, Remote Sens. Environ., 113, 1382, 10.1016/j.rse.2008.07.018 Khan, 2014, How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs, J. Hydrol., 509, 442, 10.1016/j.jhydrol.2013.11.028 Khandelwal, 2017, An approach for global monitoring of surface water extent variations in reservoirs using MODIS data, Remote Sens. Environ., 202, 113, 10.1016/j.rse.2017.05.039 Kim, 2015, A GIS-based relational data model for multi-dimensional representation of river hydrodynamics and morphodynamics, Environ. Model. Softw., 65, 79, 10.1016/j.envsoft.2014.12.002 Kumar, 2017, Error in digital network and basin area delineation using d8 method: a case study in a sub-basin of the Ganga, J. Geol. Soc. India, 89, 65, 10.1007/s12594-017-0559-1 Lashermes, 2007, Channel network extraction from high resolution topography using wavelets, Geophys. Res. Lett., 34, 23, 10.1029/2007GL031140 Lehner, 2008, New global hydrography derived from spaceborne elevation data, Eos (Washington. DC), 89, 93 Li, 2010, Effects of DEM sources on hydrologic applications, Comput. Environ. Urban Syst., 34, 251, 10.1016/j.compenvurbsys.2009.11.002 Maderal, 2016, Automatic river network extraction from LiDAR data, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., 41, 365, 10.5194/isprs-archives-XLI-B8-365-2016 Malenovský, 2012, Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land, Remote Sens. Environ., 120, 91, 10.1016/j.rse.2011.09.026 Miranda, 2016, Sentinel -1B preliminary results obtained during the orbit acquisition phase [work in progress], Procedia Comput. Sci., 100, 1313, 10.1016/j.procs.2016.09.247 Misra, 2017, Simple approaches to oil spill detection using sentinel application platform (SNAP)-ocean application tools and texture analysis: a comparative study, J. Indian Soc. Remote Sens., 1 Neis, 2013, Comparison of volunteered geographic information data contributions and community development for selected world regions, Futur. Internet, 5, 282, 10.3390/fi5020282 NHSA, 2014 Nwilo, 2005, 2005. Oil Spill Problems and Management in the Niger Delta, Int. Oil Spill Conf. Proc., 567, 10.7901/2169-3358-2005-1-567 Obida, 2018, Quantifying the exposure of humans and the environment to oil pollution in the Niger Delta using advanced geostatistical techniques, Environ. Int., 111, 32, 10.1016/j.envint.2017.11.009 Ogilvie, 2015, Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS optical data, J. Hydrol., 523, 368, 10.1016/j.jhydrol.2015.01.036 Passalacqua, 2012, Automatic geomorphic feature extraction from lidar in flat and engineered landscapes, Water Resour. Res., 48, 3528, 10.1029/2011WR010958 Rahman, 2010, Limitation of 90 m SRTM DEM in drainage network delineation using D8 method—a case study in flat terrain of Bangladesh, Appl. Geomat, 2, 49, 10.1007/s12518-010-0020-2 Rahman, 2017, Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: A case study from the Kendrapara District of Orissa State of India. Egypt, J. Remote Sens. Sp. Sci. Sabel, 2012, Development of a Global Backscatter Model in support to the Sentinel-1 mission design, Remote Sens. Environ., 120, 102, 10.1016/j.rse.2011.09.028 Shah, 2011, River extraction from satellite image, Int. J. Comput. Sci. Issues, 8, 386 Sindhu, 2015, Quantitative analysis of catchment using remote sensing and geographic information system, Aquat. Procedia, 4, 1421, 10.1016/j.aqpro.2015.02.184 Sowter, 2016, Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: results using the Intermittent SBAS (ISBAS) technique, Int. J. Appl. Earth Obs. Geoinf., 52, 230 Tzortzis, 2014, The MinMax k-Means clustering algorithm, Pattern Recognit., 47, 2505, 10.1016/j.patcog.2014.01.015 UNEP, 2011 Veloso, 2017, Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications, Remote Sens. Environ. J., 199, 415, 10.1016/j.rse.2017.07.015 Vimal, 2012, Extraction of drainage pattern from ASTER and SRTM data for a River Basin using GIS tools, Int. Conf. Environ. Energy Biotechnol., 33, 120 Webster, 2016, A cost path and network analysis methodology to calculate distances along a complex river network in the Peruvian Amazon, Appl. Geogr., 73, 13, 10.1016/j.apgeog.2016.05.008 Yamazaki, 2014, Water resources research, Water Resour. Res., 1, 3467, 10.1002/2013WR014664 Yang, 2014, River delineation from remotely sensed imagery using a multi-scale classification approach, J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 4726, 10.1109/JSTARS.2014.2309707 Zeng, 2015, A natural-rule-based-connection (NRBC) method for river network extraction from high-resolution imagery, Remote Sens., 7, 14055, 10.3390/rs71014055 Zhang, 2016, The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: a case study, Int. J. Appl. Earth Obs. Geoinf., 45, 1