Risk processes with dependence and premium adjusted to solvency targets

European Actuarial Journal - Tập 2 - Trang 1-20 - 2012
Corina Constantinescu1,2, Véronique Maume-Deschamps3, Ragnar Norberg4
1Université de Lausanne, Lausanne, Switzerland
2University of Liverpool, Liverpool, UK
3Laboratoire SAF, Université de Lyon, Université Lyon 1, ISFA, EA 2429, Lyon, France
4Laboratoire SAF, Université de Lyon, Université Lyon 1, Fondation Lyon 1, ISFA, EA 2429, Lyon, France

Tóm tắt

This paper considers risk processes with various forms of dependence between waiting times and claim amounts. The standing assumption is that the increments of the claims process possess exponential moments so that variations of the Lundberg upper bound for the probability of ruin are in reach. The traditional point of view in ruin theory is reversed: rather than studying the probability of ruin as a function of the initial reserve under fixed premium, the problem is to adjust the premium dynamically so as to obtain a given ruin probability (solvency requirement) for a fixed initial reserve (the financial capacity of the insurer). This programme is carried through in various models for the claims process, ranging from Cox processes with i.i.d. claim amounts, to conditional renewal (Sparre Andersen) processes.

Tài liệu tham khảo

Abikhalil F (1989) Finite time ruin problems for perturbed experience rating and connection with discounting risk models. ASTIN Bull 16:33–43 Albrecher H, Constantinescu C, Loisel S (2011) Explicit ruin formulas for models with dependence among risks. Insur Math Econ 48:265–270 Albrecher H, Teugels J (2006) Exponential behavior in the presence of dependence in risk theory. J Appl Prob 43:257–273 Asmussen S (1999) On the ruin problem for some adapted premium rules. In: Kalashnikov V, Andronov AM (eds) Probabilistic analysis of rare events: theory and problems of safety. Riga Aviations University, Latvia, pp 1–19. http://www.maphysto.dk/cgi-bin/gp.cgi?publ=77 Asmussen S, Albrecher H (2010) Ruin probabilities, 2nd edn. World Scientific, New Jersey Bühlmann H (1972) Ruinwahrscheinlichkeit bei erfahrungstarifiertem Portfeuille. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 72:211–224 Bühlmann H (2007) The history of ASTIN. ASTIN Bull 37:191–202 Bühlmann H, Gerber HU (1978) General jump processes and time change—or how to define stochastic operational time. Scand Actuar J 1978:102–107 Dubey A (1977) Probabilité de ruine lorsque le paramètre Poisson est ajusté a posteriori. Bulletin de l’Association des Actuaires Suisses 2: 211–224 Feller W (1971) An introduction to probability theory and its applications, vol II. Wiley, New York Ferguson TS (1972) A Bayesian analysis of some nonparametric problems. Ann Stat 1:209–230 Gerber HU (1979) An introduction to mathematical risk theory. Huebner Foundation Monograph, vol 8. R.D. Irwin, Homewood Goovaerts M, De Vylder F, Haezendonck J (1984) Insurance premiums. North-Holland, Amsterdam Grandell J (1991) Aspects of risk theory. Springer, New York Højgaard B, Taksar M (1997) Optimal proportional reinsurance policies for diffusion models. Scand Actuar J 1997:166–180 Karr A (1991) Point processes and their statistical inference, 2nd edn. Marcel Dekker, Inc., New York Loisel S, Trufin J (2009) Ultimate ruin probabilities in discrete time with Bühlmann credibility premium adjustments. Working paper 2117, Les Cahiers de Recherche de l’I.S.F.A, Université Claude Bernard Lyon 1 Schmidli H (2008) Stochastic Control in Insurance. Springer, London Taylor GC (1979) Probability of ruin under inflationary conditions or under experience rating. ASTIN Bull 10:149–162 Watanabe S (1964) On discontinuous additive functionals and Levy measures of Markov processes. Jpn J Math 34:53–70