Risk processes with dependence and premium adjusted to solvency targets
Tóm tắt
This paper considers risk processes with various forms of dependence between waiting times and claim amounts. The standing assumption is that the increments of the claims process possess exponential moments so that variations of the Lundberg upper bound for the probability of ruin are in reach. The traditional point of view in ruin theory is reversed: rather than studying the probability of ruin as a function of the initial reserve under fixed premium, the problem is to adjust the premium dynamically so as to obtain a given ruin probability (solvency requirement) for a fixed initial reserve (the financial capacity of the insurer). This programme is carried through in various models for the claims process, ranging from Cox processes with i.i.d. claim amounts, to conditional renewal (Sparre Andersen) processes.
Tài liệu tham khảo
Abikhalil F (1989) Finite time ruin problems for perturbed experience rating and connection with discounting risk models. ASTIN Bull 16:33–43
Albrecher H, Constantinescu C, Loisel S (2011) Explicit ruin formulas for models with dependence among risks. Insur Math Econ 48:265–270
Albrecher H, Teugels J (2006) Exponential behavior in the presence of dependence in risk theory. J Appl Prob 43:257–273
Asmussen S (1999) On the ruin problem for some adapted premium rules. In: Kalashnikov V, Andronov AM (eds) Probabilistic analysis of rare events: theory and problems of safety. Riga Aviations University, Latvia, pp 1–19. http://www.maphysto.dk/cgi-bin/gp.cgi?publ=77
Asmussen S, Albrecher H (2010) Ruin probabilities, 2nd edn. World Scientific, New Jersey
Bühlmann H (1972) Ruinwahrscheinlichkeit bei erfahrungstarifiertem Portfeuille. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 72:211–224
Bühlmann H (2007) The history of ASTIN. ASTIN Bull 37:191–202
Bühlmann H, Gerber HU (1978) General jump processes and time change—or how to define stochastic operational time. Scand Actuar J 1978:102–107
Dubey A (1977) Probabilité de ruine lorsque le paramètre Poisson est ajusté a posteriori. Bulletin de l’Association des Actuaires Suisses 2: 211–224
Feller W (1971) An introduction to probability theory and its applications, vol II. Wiley, New York
Ferguson TS (1972) A Bayesian analysis of some nonparametric problems. Ann Stat 1:209–230
Gerber HU (1979) An introduction to mathematical risk theory. Huebner Foundation Monograph, vol 8. R.D. Irwin, Homewood
Goovaerts M, De Vylder F, Haezendonck J (1984) Insurance premiums. North-Holland, Amsterdam
Grandell J (1991) Aspects of risk theory. Springer, New York
Højgaard B, Taksar M (1997) Optimal proportional reinsurance policies for diffusion models. Scand Actuar J 1997:166–180
Karr A (1991) Point processes and their statistical inference, 2nd edn. Marcel Dekker, Inc., New York
Loisel S, Trufin J (2009) Ultimate ruin probabilities in discrete time with Bühlmann credibility premium adjustments. Working paper 2117, Les Cahiers de Recherche de l’I.S.F.A, Université Claude Bernard Lyon 1
Schmidli H (2008) Stochastic Control in Insurance. Springer, London
Taylor GC (1979) Probability of ruin under inflationary conditions or under experience rating. ASTIN Bull 10:149–162
Watanabe S (1964) On discontinuous additive functionals and Levy measures of Markov processes. Jpn J Math 34:53–70