Rủi ro phát thải hydro sulfide trong pin lithium–sulfur dưới điều kiện xảy ra sự cố

Journal of Applied Electrochemistry - Tập 53 - Trang 1657-1668 - 2023
Qiang Zhao1, Yujie Zhou1, Chunhui Luo1, Wei Yang2
1School of Chemical Engineering, Sichuan University, Chengdu, China
2State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu, China

Tóm tắt

Pin lithium–sulfur, là một trong những công nghệ hứa hẹn nhất cho các ứng dụng lưu trữ năng lượng, đang thu hút sự quan tâm ngày càng tăng. Một thách thức quan trọng cho việc thương mại hóa pin lithium–sulfur là sự ổn định kém của lithium sulfide trước độ ẩm, điều này có thể dẫn đến việc phát thải khí hydrogen sulfide độc hại. Tuy nhiên, nguy cơ phát thải hydrogen sulfide từ pin lithium–sulfur dưới các điều kiện giới hạn vẫn chưa rõ ràng. Trong bài báo này, chúng tôi điều tra cơ chế phát thải hydrogen sulfide trong pin lithium–sulfur, và đánh giá ảnh hưởng của việc xả pin đến sự sinh ra của hydrogen sulfide. Việc sản xuất sulfion và hydrogen sulfide được nghiên cứu một cách định tính/định lượng. Theo các kết quả trên, hành vi hình thành hydrogen sulfide trong các pin được làm rõ dựa trên mô phỏng nhiệt động học. Hơn nữa, ảnh hưởng của việc xả pin lithium–sulfur đến sự phát thải hydrogen sulfide được tính toán định tính. Những kết quả này cho thấy rằng hydrogen sulfide thực sự được sản xuất từ các sản phẩm xả của pin lithium–sulfur dưới điều kiện axit, các phát hiện này cũng có thể cung cấp một số hướng dẫn hoặc gợi ý cho các ứng dụng thực tế của pin lithium–sulfur.

Từ khóa

#pin lithium–sulfur #phát thải hydrogen sulfide #sự ổn định của lithium sulfide #ứng dụng lưu trữ năng lượng #nhiệt động học

Tài liệu tham khảo

Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647 Chombo PV, Laoonual Y (2020) A review of safety strategies of a Li-ion battery. J Power Sources 478:228649 Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264 Jain A, Hautier G, Ong SP, Dacek S, Ceder G (2015) Relating voltage and thermal safety in Li-ion battery cathodes: a high-throughput computational study. Phys Chem Chem Phys 17(8):5942–5953 Chen K, Goel V, Min JN, Wied M, Müller S, Wood V, Sakamoto J, Thornton K, Dasgupta NP (2020) Enabling 6 C fast charging of li-ion batteries with graphite/hard carbon hybrid anodes. Adv Energy Mater 11:2003336 Scott ID, Jung YS, Cavanagh AS, Yan Y, Dillon AC, George SM, Lee SH (2011) Ultrathin coatings on nano-LiCoO2 for li-ion vehicular applications. Nano Lett 11(2):414–418 Lee HW, Muralidharan P, Ruffo R, Mari CM, Kim DK (2010) Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett 10(10):3852–3856 Mao B, Liu C, Yang K, Li S, Sun J (2021) Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode. Renew Sustain Energy Rev 139:110717 Wu H-L, Huff LA, Gewirth AA (2015) In situ Raman spectroscopy of sulfur speciation in lithium–sulfur batteries. ACS Appl Mater Interfaces 7(3):1709–1719 Hu Y, Chen W, Lei T, Jiao Y, Huang J, Hu A, Gong C, Yan C, Wang X, Xiong J (2020) Strategies toward high-loading lithium–sulfur battery. Adv Energy Mater 10(17):2000082 Fan X, Sun W, Meng F, Xing A, Liu J (2018) Advanced chemical strategies for lithium–sulfur batteries: a review. Green Energy Environ 3(01):2–19 Li Z, Zhang JT, Chen YM, Li J, Lou XW (2015) Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat Commun 6:8850 Hua W, Yang Z, Nie H, Li Z, Yang J, Guo Z, Ruan C, Chen X, Huang S (2017) Polysulfide-scission reagents for the suppression of the Shuttle effect in lithium–sulfur batteries. ACS Nano 11(2):2209–2218 Kim HM, Hwang JY, Manthiram A, Sun YK (2015) High-performance lithium–sulfur batteries with a self-assembled MWCNT interlayer and a robust electrode-electrolyte interface. ACS Appl Mater Interfaces 5:10812 Xu Z, Wang J, Yang J, Miao X, Chen R, Qian J, Miao R (2016) Enhanced performance of a lithium–sulfur battery using a carbonate-based electrolyte. Angew Chem Int Ed 55:10372 Li T, Bai X, Gulzar U, Bai YJ, Capiglia C, Deng W, Zhou X, Liu Z, Feng Z, Proietti Zaccaria R (2019) A comprehensive understanding of lithium–sulfur battery technology. Adv Funct Mater 29(32):1901730 Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200 Wang J, Cai W, Mu X, Han L, Hu Y (2021) Construction of multifunctional and flame retardant separator towards stable lithium–sulfur batteries with high safety. Chem Eng J 416(10):129087 Yan Y, Cheng C, Zhang L, Li Y, Lu J (2019) Deciphering the reaction mechanism of lithium–sulfur batteries by in situ/operando synchrotron-based characterization techniques. Adv Energy Mater 9:1900148 Fronczek DN, Bessler WG (2013) Insight into lithium–sulfur batteries: elementary kinetic modeling and impedance simulation. J Power Sources 244(15):183–188 Lee SK, Oh SM, Park E, Scrosati B, Sun YK (2015) Highly cyclable lithium–sulfur batteries with a dual-type sulfur cathode and a lithiated Si/SiOx nanosphere anode. Nano Lett 15(5):2863 Song J, Gordin ML, Xu T, Chen S, Yu Z, Sohn H, Lu J, Ren Y, Duan Y, Wang D (2015) Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high‐performance lithium–sulfur battery cathodes. Angew Chem 127(14):4399–4403 Zhu Y, Mo Y (2020) Materials design principles for air-stable lithium/sodium solid electrolytes. Angew Chem Int Ed 59(40):17472–17476 Kuo D-H, Lo R, Hsueh TH, Jan D-J, Su C-H (2019) LiSnOS/gel polymer hybrid electrolyte for the safer and performance-enhanced solid-state LiCoO2/Li lithium-ion battery. J Power Sources 429:89–96 Hayashi A, Tatsumisago M (2012) Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes. Electron Mater Lett 8(2):199–207 Guidotti TL (2010) Hydrogen sulfide: advances in understanding human toxicity. Int J Toxicol 29(6):569–581 Doujaiji B, Al-Tawfiq JA (2010) Hydrogen sulfide exposure in an adult male. Ann Saudi Med 30(1):76–80 Liu Y, He P, Zhou H (2018) Rechargeable solid-state Li–Air and Li–S batteries: materials, construction, and challenges. Adv Energy Mater 8(4):1701602 Wu J, Liu J, Lu Z, Lin K, Lyu Y-Q, Li B, Ciucci F, Kim J-K (2019) Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Energy Storage Mater 23:8–16 Hernández García A, Pimentel Vázquez E, Mena Campos J (2003) Minibioreactor-gas collector for determining bacteria-produced hydrogen sulfide. Electron J Biotechnol 6:223–232 Linderholm AL, Findleton CL, Kumar G, Hong Y, Bisson LF (2008) Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 74(5):1418–1427 Ding, Jian (2013) Investigation of thermodynamic equilibrium of MSWI fly Ash during high-temperature treatment. Adv Mater Res 610–613:1871–1875 Zhao Q, Sun L, Wang G, Luo C, Shun Y, Yan K (2019) Novel reduction roasting and leaching method for manganese dioxide ore using FeP slag as the reductant. Hydrometallurgy 189:105113 Kamyshny A, Gun J, Rizkov D, Voitsekovski T, Lev O (2007) Equilibrium distribution of Polysulfide Ions in Aqueous Solutions at different temperatures by Rapid single phase derivatization. Environ Sci Technol 41(7):2395–2400 Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25(2):175–243 Deng Z, Sun L, Sun Y, Luo C, Zhao Q, Yan K (2019) The phase transfer effect of sulfur in lithium–sulfur batteries. RSC Adv 9(56):32826–32832 Tokur M, Jin MY, Sheldon BW, Akbulut H (2020) Stress bearing mechanism of reduced graphene oxide in silicon based composite anodes for lithium ion batteries. ACS Appl Mater Interfaces 12:33855–33869 Son Y, Lee JS, Son Y, Jang JH, Cho J (2015) Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv Energy Mater 5(16):1500110 Ryu HS, Guo Z, Ahn HJ, Cho GB, Liu H (2009) Investigation of discharge reaction mechanism of lithium|liquid electrolyte|sulfur battery. J Power Sources 189(2):1179–1183 Water quality-determination of sulfide-methylene blue spectrophotometric method, GB/T 16489-1996, Ministry of environmental protection of the People`s Republic of China in 1996; Vol.GB/T 16489-1996 Shanthi K, Balasubramanian N (1996) A simple Spectrophotometric Method for the determination of Hydrogen Sulfide based on Schiff’s reaction. Microchem J 53(2):168–174