Risk concentration based on Expectiles for extreme risks under FGM copula
Tài liệu tham khảo
Acerbi, C., Székely, B., Back-Testing Expected Shortfall. MSCI Research Paper, 2014.
Bellini, 2014, Generalized quantiles as risk measures, Insurance Math. Econom., 54, 41, 10.1016/j.insmatheco.2013.10.015
Cambanis, 1977, Some properties and generalizations of multivariate Eyraud-Gumbel-Morgenstern distributions, J. Multivariate Anal., 7, 551, 10.1016/0047-259X(77)90066-5
Degen, 2008, EVT-based estimation of risk capital and convergence of high quantiles, Adv. Appl. Probab., 40, 696, 10.1239/aap/1222868182
Degen, 2010, Risk concentration and diversification: second-order properties, Insurance Math. Econom., 46, 541, 10.1016/j.insmatheco.2010.01.011
de Haan, 2006
Embrechts, 2009, Multivariate extremes and the aggregation of dependent risks: examples and counter-examples, Extremes, 12, 107, 10.1007/s10687-008-0071-5
Farlie, 1960, The performance of some correlation coefficients for a general bivariate distribution, Biometrika, 47, 307, 10.1093/biomet/47.3-4.307
Fischer, 2007, Constructing generalized FGM copulas by means of certain univariate distributions, Metrika, 65, 243, 10.1007/s00184-006-0075-6
Geluk, 1997, Second-order regular variation, convolution and the central limit theorem, Stochastic Process. Appl., 69, 139, 10.1016/S0304-4149(97)00042-2
Gumbel, 1960, Bivariate exponential distributions, J. Amer. Statist. Assoc., 55, 698, 10.1080/01621459.1960.10483368
Hashorva, 1999, Extremes values in FGM random sequences, J. Multivariate Anal., 68, 212, 10.1006/jmva.1998.1795
Hua, 2011, Second-order regular variation and conditional tail expectation of multiple risks, Insurance Math. Econom., 49, 537, 10.1016/j.insmatheco.2011.08.013
Huang, 1999, Modifications of the Farlie–Gumbel–Morgenstern distributions, A tough hill to climb, Metrika, 49, 135, 10.1007/s001840050030
Lai, 2000, A new family of positive quadrant dependent bivariate distributions, Statist. Probab. Lett., 46, 359, 10.1016/S0167-7152(99)00122-4
Mao, 2013, Second-order properties of risk concentrations without the condition of asymptotic smoothness, Extremes, 16, 383, 10.1007/s10687-012-0164-z
Mao, 2012, Second-order expansions of the risk concentration based on CTE, Insurance Math. Econom., 51, 449, 10.1016/j.insmatheco.2012.07.002
Mao, 2015, Second-order properties of tail probabilities of sums and randomly weighted sums, Extremes, 10.1007/s10687-015-0218-0
Mao, 2015, Asymptotics of generalized quantiles and Expectiles for extreme risks, Probab. Eng. Inform. Sci., 29, 309, 10.1017/S0269964815000017
Mikosch, 2004, Modeling dependence and tails of financial time series, Monogr. Statist. Appl. Probab., 99, 185
Morgenstern, 1956, Einfache Beispiele zweidimensionaler Verteilungen, Mitt. Math. Stat., 8, 234
Newey, 1987, Asymmetric least squares estimation and testing, Econometrica, 819, 10.2307/1911031
Resnick, 2007
Rodriguez-Lallena, 2004, A new class of bivariate copulas, Statist. Probab. Lett., 66, 315, 10.1016/j.spl.2003.09.010
Sarmanov, 1966, Generalized normal correlation and two-dimensional Fréchet classes, Dokl. Akad. Nauk SSSR, 168, 32
Yang, 2013, Extremes and products of multivariate AC-product risks, Insurance Math. Econom., 52, 312, 10.1016/j.insmatheco.2013.01.005