Đánh giá rủi ro của các kim loại vi lượng trong Solanum lycopersicum L. (cà chua) được trồng dưới điều kiện tưới nước thải

Springer Science and Business Media LLC - Tập 30 Số 14 - Trang 42255-42266
Dalia A. Ahmed1, Dalia Fahmy Slima2, Hatim M. Al-Yasi3, Loutfy M. Hassan4, Tarek M. Galal4
1Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
2Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia, Egypt
3Biology Department, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
4Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11790, Egypt

Tóm tắt

Tóm tắt

Sự ô nhiễm kim loại nặng của các cây trồng thực phẩm được xem là một vấn đề toàn cầu. Các kim loại nặng như cadmium (Cd), đồng (Cu), chì (Pb), crom (Cr), kẽm (Zn), nickel (Ni), asen (As), coban (Co) và thủy ngân (Hg) đều có độc tính. Tùy thuộc vào nồng độ và khả năng sinh học tích lũy của chúng, các kim loại này có thể mang lại nhiều rủi ro cho sức khỏe. Nghiên cứu này nhằm điều tra các ảnh hưởng của kim loại độc hại (TMs) đến các đặc tính sinh trưởng của cà chua được trồng dưới hệ thống tưới nước thải. Ngoài ra, nghiên cứu còn xem xét những hậu quả tiềm tàng đối với cả cá nhân trong nước và nước ngoài khi tiêu thụ cây trồng này. Tại miền nam Cairo, Ai Cập, hai địa điểm nghiên cứu đã được khảo sát: một địa điểm đối chứng ở Abu Ragwan, nơi nhận nước từ các nhánh sông Nile, và một địa điểm ô nhiễm ở El-Shobak El-Sharky, nơi có nước thải công nghiệp chưa qua xử lý. Nồng độ dinh dưỡng của đất và cây cà chua (N, P và K) đã giảm (P < 0.01), trong khi các TMs đã gia tăng (P < 0.001) đáng kể do việc sử dụng nước thải để tưới. Ngoại trừ Cu, tất cả các TM được khảo sát đều tích lũy trong rễ cây cà chua thay vì thân trên, với yếu tố sinh học tích lũy (BF) > 1. Tuy nhiên, chỉ có Pb và Ni đã trải qua quá trình chuyển hóa và lưu trữ trong thân trên của cây cà chua, với yếu tố chuyển hóa (TF) > 1. Một lượng lớn Fe (5000.1 mg kg−1), Pb (360.7 mg kg−1), và Mn (356.3 mg kg−1) đã có mặt trong trái cây có thể ăn được. Việc tiêu thụ các cây trồng ô nhiễm làm tăng tỷ lệ tiêu thụ các kim loại hàng ngày (DIR). Các giá trị của chỉ số nguy hại cao (HQ) đã được ghi nhận (2073.8 và 2558.9 cho Pb, 574.0 và 708.3 cho Cd, và 41.1 và 50.7 cho Fe cho người lớn và trẻ em, tương ứng). Do đó, các cây cà chua được trồng trong đất tưới bằng nước thải chưa qua xử lý có thể tạo ra nguy cơ lớn hơn cho sức khỏe con người, cho thấy rằng chúng không nên được trồng như một loại cây để tiêu thụ.

Từ khóa


Tài liệu tham khảo

AbulKashem MDA, Kawai S (2007) Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Sci Plant Nutr 53:246–251. https://doi.org/10.1111/j.1747-0765.2007.00129.x

Adekunle IM, Olorundare O, Nwange C (2009) Assessments of lead levels and daily intakes from green leafy vegetables of southwest Nigeria. Nutr Food Sci 39:413–422

Ahmed DA, Slima DF (2018) Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater. Environ Sci Pollut Res 25:14996–15005. https://doi.org/10.1007/s11356-018-1675-1

Ahmed DA, Galal T, Al-Yasi HM, Hassan L, Slima DF (2022) Accumulation and translocation of eight trace metals by the different tissues of Abelmoschus esculentus Moench. irrigated with untreated wastewater. Environ Sci Pollut Res 29:21221–21231. https://doi.org/10.1007/s11356-021-17315-7

Allen SE (1989) Chemical analysis of ecological materials. Blackwell Scientific Publications, London

Allen SE, Grimshaw HM, Parkinson JA, Quarmby C, Roberts JD (1986) In: Moore PD, Chapman SB (eds) Methods in plant ecology, 2nd edn. Blackwell, Oxford, pp 411–466

APHA (1999) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

Asati A, Pichhode M, Nikhil k, (2016) Effect of heavy metals on plants: an overview. Int J Appl Innov Eng Manage (IJAIEM) 5(3):56–66

Asgari K, Cornelis WM (2015) Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Environ Monit Assess 187(7):410. https://doi.org/10.1007/s10661-015-4565-8

Begum RA, Zaman MW, Mondol ATMAI., Islam MS, Hossain KMF (2011) Effects of Textile Industrial Waste Water and Uptake of Nutrients on the Yelid of Rice. Bangladesh J Agril Res 36(2):319–331. https://doi.org/10.3329/bjar.v36i2.9260

Brower JE, Zar JH (1984) Field and laboratory methods for general ecology. Brown Publishers Dubugue, Low, WmC, p 226

Chen T, Chang Q, Liu J, Clevers JGPW, Kooistra L (2016) Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: a case study in Northwest China. Sci Total Environ 565:155–164. https://doi.org/10.1016/j.scitotenv.2016.04.163

Ching JA (2008) Phytoremediation and Biomarker Potentials of Arachis hypogaea L.(Peanut) to Heavy Metals in Soils (Doctoral dissertation, UST Graduate School). Chicago

Cherfi A, Abdoun S, Gaci O (2014) Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food Chem Toxicol 70:48–53. https://doi.org/10.1016/j.fct.2014.04.044

Chu KW, Chow KL (2002) Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquat Toxicol 61:53–64

Delzer GC, McKenzie SW (2003) Five-day biochemical oxygen demand: U.S. geological survey techniques of water resources investigations. Book 9, chap A7.0. https://doi.org/10.3133/twri09A7.0

Dong J, Wu FB, Zhang GP (2005) Effect of cadmium on growth and photosynthesis of tomato seedlings. J Zhejianguniv Sci B 6:974–980. https://doi.org/10.1631/jzus.2005.B0974

Eltaher GT, Ahmed DA, El-Beheiry M, Sharaf El-Din A (2019) Biomass estimation and heavy metal accumulation by Pluchea dioscoridis (L.) DC. in the Middle Nile Delta, (Egypt): Perspectives for phytoremediation South Africa. J Bot 127:153–166. https://doi.org/10.1016/j.sajb.2019.08.053

FAO/WHO (Food and Agriculture Organization of the United Nations, World Health Organization) (2013) Expert Committee on Food Additives: evaluation of certain food additives and contaminants: seventy-seventh report of the joint FAO/WHO expert committee on food additives. World Health Organization, Geneva Switzerland

FAO (Food and Agriculture Organization of the United Nations) (2021) Crop prospects and food situation- Quarterly global report No. 4. Rome pp 46. https://doi.org/10.4060/cb7877en

Farahat E, Galal TM, Elawa O, Hassan L (2017) Health risk assessment and growth characteristics of 1 wheat and maize crops irrigated with contaminated wastewater. Environ Monit Assess 189(11):535–545

Fawad A, Hidayat U, Ikhtiar K (2017) Heavy metals accumulation in vegetables irrigated with industrial influents and possible impact of such vegetables on human health. Sarhad J Agric 33(3):489–500. https://doi.org/10.17582/journal.sja/2017/33.3.489.500

Frederick A, Ching JA (2014) Phytoremediation potential of Tomato (Lycopersicon esculentum Mill) in artificially contaminated soils. Presented at the DLSU Research Congress. De La Salle University, Manila, Philippines

Galal TM (2016) Health hazards and heavy metals accumulation by summer squash (Cucurbita pepo L.) cultivated in contaminated soils. Environ Monit Assess 188:434–446. https://doi.org/10.1007/s10661-016-5448-3

Galal TM, Shehata HS (2015) Impact of nutrients and heavy metals capture by weeds on the growth and production of rice (Oryza sativa L.) irrigated with different water sources. Ecol Indic 54:108–115. https://doi.org/10.1016/j.ecolind.2015.02.024

Galal TM, Hassan LM, Ahmed DA, Alamri SAM, Alrumman SA, Eid EM (2021) Heavy metals uptake by the global economic crop (Pisumsativum L.) grown in contaminated soils and its associated health risks. PLOS One 16(6):1–15. https://doi.org/10.1371/journal.pone.0252229

Gatta G, Libutti A, Gagliardi A, Beneduce L, Brusetti L, Borruso L, Disciglio G, Tarantino E (2015) Treated agro-industrial wastewater irrigation of tomato crop: effects on qualitative/quantitative characteristic of production and microbiological properties of the soil. Agric Water Manag 149:33–43

Gupta S, Nayek S, Saha RN, Satpati S (2008) Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory. Environ Geol 55:731–739. https://doi.org/10.1007/s00254-007-1025-y

Horiguchi G, Fujikura U, Ferjani A, Ishikawa N, Tsukaya H (2006) Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. Plant J 48:638–644

Huang Z, Pan X-D, Wu P-G, Han J-L, Chen Q (2014) Heavy metals in vegetables and the health risk to population in Zhejiang China. Food Control 36:248–252

Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

Jolly YN, Islam A, Akbar S (2013) Transfer of metals from soil to vegetables and possible health risk assessment. Springerplus 2:385–391

Khan S, Reid BJ, Li G, Zhu YG (2014) Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village Longyan. China Environ Int 68:154–161. https://doi.org/10.1016/j.envint.2014.03.017

Kumar V, Sharma A, Kaur P, Sidhu GPS, Bali AS, Bhardwaj R, Thukral AK, Cerda A (2019) Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere 216:449–462. https://doi.org/10.1016/j.chemosphere.2018.10.066

Lian Z, Zhao X, Gu X, Li X, Luan M, Yu M (2022) Presence, sources, and risk assessment of heavy metals in the upland soils of northern China using Monte Carlo simulation. Ecotoxicol Environ Saf 230:113154. https://doi.org/10.1016/j.ecoenv.2021.113154

Liu Z, Fei Y, Shi H, Li Mo, Qi J (2022) Prediction of high-risk areas of soil heavy metal pollution with multiple factors on a large scale in industrial agglomeration areas. Sci Total Environ 808:151874. https://doi.org/10.1016/j.scitotenv.2021.151874

Lowry OH, Rosen BJ, Fan AC, Randel RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:225–275

Lu RK (2000) Methods of inorganic pollutants analysis. In: soil and agrochemical analysis methods. Agricultural Science and Technology Press. Beijing

Mahalakshmi M, Balakrishnan S, Indira K, Srinivasan M (2012) Characteristic levels of heavy metals in canned tuna fish. J Toxicol Environ Heal Sci 4(2):43–45. https://doi.org/10.5897/JTEHS11.079

Maleki A, Zaras MA (2008) Heavy metals in selected edible vegetables and estimation of their daily intake in Sanandaj Iran. Southeast Asian j Trop Med Public Health 39(2):335–340

Maleva MG, Nekrasova GF, Borisova GG, Chukina NV, Ushakova OS (2012) Effect of heavy metal on photosynthetic apparatus and antioxidant status of elodea. Russ J Plant Physiol 59:190–197. https://doi.org/10.1134/S1021443712020069

Mami Y, Ahmadi G, Shahmoradi M, Ghorbani RH (2011) Influence of different concentration of heavy metals on the seed germination and growth of tomato. African J Environ Sci Technol 5(6):420–426. https://doi.org/10.5897/AJEST10.260

Marwari R, Khan TI (2012) Effect of textile wastewater on tomato plant, Lycopersicon esculentum. J Environ Biol 33:849–854

Metzner H, Rauand H, Senger H (1965) Unter suchungen zur synchronisier barteit einzelner pigmentan angel mutanten von chlorella. Planta 65:186–194

Mitra S, Chakraborty AJ, Tareq A, Bin Emran T, Nainu F, Khusro A, Idris AM, Uddin M, Osman H, Alhumaydhi FA, Simal-gandara J (2022) Science impact of heavy metals on the environment and human health : novel therapeutic insights to counter the toxicity. J King Saud Univ - Sci 34(3):101865

Murtć S, Zahirović Ć, Čivic H, Karić L, Furković J (2018) Uptake of heavy metals by tomato plants (Lycopersicum esculentum Mill.) and their distribution inside the plant. Agric For 64(4):251–261. https://doi.org/10.17707/AgricultForest.64.4.25

Nitu M, Pruteanu A, Bordean DM, Popescu C, Deak G, Boboc M, Mustăţea G (2019) Reserches on the accumulation and transfer of heavy metals in the soil in tomatoes- Solanum lycopersicum. E3S Web Conf 112:03020. https://doi.org/10.1051/e3sconf/201911203020

Nzediegwu C, Prasher S, Elsayed E, Dhiman J, Mawof A, Patel R (2020) Impact of soil biochar incorporation on the uptake of heavy metals present in wastewater by spinach plants. Water Air Soil Pollut 231:123. https://doi.org/10.1007/s11270-020-04512-2

Osawa T, Tajuke A (1990) The effect of form of nitrogen supplied and pH level of the nutrient solution on copper toxicities in vegetative crops. J Jpn Soc Hort Sci 59(3):519–525

Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, Mccarthz I, Del Rio LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–526

Peng HY, Yang XE, Jiang LY (2005) Copper phytoavailability and uptake by Elsholtzi asplendens from contaminated soil as affected by soil amendments. J Environ Sci Health 40:839–856. https://doi.org/10.1081/ESE-200048283

Piper CS (1947) Soil and plant analysis. Interscience Publishers Inc, New York

Pitwell LR (1983) Standard COD. Chem Brit 19:907

Rattan R, Datta S, Chhonkar P, Suribabu K, Singh A (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater: a case study. Agr Ecosys Environ 109:310–322

Roba C, Roşu C, Piştea I, Al O, Baciu C (2016) Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Environ Sci Pollut 23(7):6062–6073. https://doi.org/10.1007/s11356-015-4799-6

Salem NM, Albanna SL, Awwad AM (2016) Toxic heavy metals accumulation in Tomato plant (Solanum lycopersicum). J Agric Biol Sci 11(10):399–404

Seregin IV, Kozhevnikova AD, Kazyumina EM Ivanov VB (2003) Nickel Toxicity and Distribution in Maize Roots. Russian Journal of Plant Physiology 50:711–717. https://doi.org/10.1023/A:1025660712475

Sharma RK, Agrawal M, Marshall FM (2009) Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food Chem Toxicol 47:583–591

Slima DF, Ahmed DA (2020) Trace metals accumulated in pea plant (Pisum sativum L.) as a result of irrigation with wastewater. J Soil Sci Plant Nutr 20:2749–2760. https://doi.org/10.1007/s42729-020-00341-8

SPSS (2006) SPSS base 15.0 Users guide. SPSS inc., Chicago, USA

Siddiqui MF (2010) Cadmium induced renal toxicity in male rats. J Med 15:93–96

Singh UK, Kumar B (2017) Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 174:183–199

Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plant: role of transcription, proteomics, metabolomics and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

Symeonidis L, Karataglis S (1992) Interactive effects of Cd, Pb, and Zn on root growth of two metal tolerant genotypes of Holcus lanatus L. Biol Met 5:173

Umbriet WW, Burris RH, Stauffer JF, Cohen PP, Johanse WJ, Lee PGA, Potter VR, Schneider WC (1959) Monometric technique, a manual description method, applicable to study of desiring metabolism Burgess Publishing Company

US-EPA (United States Environmental Protection Agency) (2010) Risk-based concentration table. United State Environmental Protection Agency, Washington DC

US-EPA (United States Environmental Protection Agency) (2013) Reference dose (RfD): Description and use in health risk assessments. Background Document 1A, Integrated Risk Information System (IRIS). United States Environmental Protection Agency: Washington, DC

Wade TL, Brooks JM, Kennicutt MC, McDonald TJ, Sericano JL, Jackson TL (1993) Trace metals and organic contaminants analytical techniques 5. In: Lauenstein GG, Cantillo AY (Eds), Sampling and analytical methods of the national status and trend program. National Benthic Surveillance and Mussel Watch Projects 1984–1992, pp. 121–139. NOAA Technical Memorandum NOS ORCA 71. Silver Spring, MD

Waqas M, Li G, Khan S, Shamshad I, Reid BJ, Qamar Z, Chao C (2015) Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ Sci Pollut Res 22(16):12114–12123. https://doi.org/10.1007/s11356-015-4432-8

WHO (World Health Organization) (2013) Guidelines for the safe use of wastewater and food stuff; volume 2: wastewater use in agriculture. World Health Organization, Geneva

WHO (1996) Health criteria other supporting information. In guidelines for drinking water quality, Vol. 2 (2nd ed.). Geneva, 31–388