Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá rủi ro về ô nhiễm hydrocarbon thơm đa vòng trong trầm tích ven bờ Goa, Ấn Độ
Tóm tắt
Goa, một tiểu bang nhỏ ở Ấn Độ, là điểm đến du lịch nổi tiếng với bờ biển và các bãi biển. Các hoạt động của con người dẫn đến ô nhiễm môi trường. Trong số nhiều chất ô nhiễm, hydrocarbon thơm đa vòng đại diện cho một nhóm chất gây ô nhiễm chính do sự phân bố rộng rãi và tính bền vững lâu dài trong môi trường. Chưa có thông tin nào về mức độ ô nhiễm hydrocarbon thơm đa vòng (PAH) trong trầm tích dọc theo bờ biển Goa. Nghiên cứu này nhằm thiết lập mức cơ bản cho nồng độ PAH trong trầm tích dọc theo bờ biển để giúp bình luận về mức ô nhiễm và do đó hiểu được rủi ro và ảnh hưởng của chúng đối với đời sống biển tại đây. Nồng độ tổng PAH dọc theo các điểm lấy mẫu được chọn ở bờ biển Goa là từ 1,00 đến 875 μg g−1. Nồng độ PAH cao nhất được phát hiện tại rừng ngập mặn Đảo Divar (875 μg g−1); thấp nhất được quan sát tại bãi biển Galgibaga (365 μg g−1). Kết quả tiết lộ rằng trầm tích ven bờ Goa bị ô nhiễm nặng nề với PAH. Phân bổ nguồn gốc của PAH được phân tích dựa trên tỷ lệ chẩn đoán, và kết quả cho thấy sản phẩm dầu mỏ và sự cháy của chúng là nguyên nhân chính gây ra sự hình thành của chúng. Kết quả của các hệ số rủi ro cho thấy các giá trị này vượt xa giới hạn trung bình hiệu ứng (ER-M), cho thấy điều này có thể gây ra rủi ro cao cho hệ sinh thái.
Từ khóa
#hydrocarbon thơm đa vòng #ô nhiễm môi trường #Goa #bờ biển #đánh giá rủi roTài liệu tham khảo
Adeniji AO, Okoh OO, Okoh AI (2019) Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River , South Africa and their health risk assessment. Arch Environ Contam Toxicol 76(4):657–669. https://doi.org/10.1007/s00244-019-00617-w
Alegbeleye OO, Opeolu BO, Jackson VA (2017) Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manag 60(4):758–783. https://doi.org/10.1007/s00267-017-0896-2
Barron MG, Carls MG, Heintz R, Rice SD (2004) Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon. Toxicol Sci 78:60–67
Bhagat J, Sarkar A, Ingole BS (2016) DNA damage and oxidative stress in marine gastropod Morula granulata exposed to Phenanthrene. Water Air Soil Pollut 227:114. https://doi.org/10.1007/s11270-016-2815-1
Behera BK, Das A, Sarkar DJ, Weerathunge P, Parida PK, Das BK, Thavamani P, Ramanathan R, Bansal V (2018) Polycyclic aromatic hydrocarbons (PAHs) in inland aquatic ecosystems: perils and remedies through biosensors and bioremediation. Environ Pollut 241:212–233. https://doi.org/10.1016/j.envpol.2018.05.016
Billiard SM, Timme-Laragy AR, Wassenberg DM, Cockman C, Giulio RTD (2006) The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol Sci 92:526–536
Brewster CS, Sharma VK, Cizmas L, McDonald TJ (2018) Occurrence, distribution and composition of aliphatic and polycyclic aromatic hydrocarbons in sediment cores from the Lower Fox River, Wisconsin. US Environ Sci Pollut Res 25(5):4974–4988. https://doi.org/10.1007/s11356-017-0819-z
Budzinski H, Jones I, Bellocq J, Pierard C, Garrigues PH (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58(1-2):85–97
Cherr GN, Fairbairn E, Whitehead A (2017) Impacts of petroleum-derived pollutants on fish development. Annu Rev Anim Biosci 5:185–203
Colli-Dula RC, Fang X, Moraga-Amador D, Albornoz-Abud N, Zamora-Bustillos R, Conesa A, Zapata-Perez O, Moreno D, Hernandez-Nuñez E (2018) Transcriptome analysis reveals novel insights into the response of low-dose benzo[a]pyrene exposure in male tilapia. Aquat Toxicol 201:162–173
Dong CD, Chen CF, Chen CW (2012) Determination of polycyclic aromatic hydrocarbons in industrial harbour sediments by GC-MS. Int J Environ Res Public Health 9(6):2175–2188. https://doi.org/10.3390/ijerph9062175
Dudhagara DR, Rajpara RK, Bhatt JK, Gosai HB, Sachaniya BK, Dave BP (2016) Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ Pollut 213:338–346. https://doi.org/10.1016/j.envpol.2016.02.030
Edokpayi JN, Odiyo JO, Popoola OE, Msagati TA (2016) Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. Int J Environ Res Public Health 13(4):387. https://doi.org/10.3390/ijerph13040387
Farwell A, Nero V, Croft M, Bal P, Dixon DG (2006) Modified Japanese medaka embryo-larval bioassay for rapid determination of developmental abnormalities. Arch Environ Contam Toxicol 51:600–607
Garcia MR, Martins CC (2021) A systematic evaluation of polycyclic aromatic hydrocarbons in South Atlantic subtropical mangrove wetlands under a coastal zone development scenario. J Environ Manag 277:111–421. https://doi.org/10.1016/j.jenvman.2020.111421
Ghoshal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 1369. https://doi.org/10.3389/fmicb.2016.01369
Hassan HM, Castillo AB, Yigiterhan O, Elobaid EA, Al-Obaidly A, Al-Ansari E, Obbard JP (2018) Baseline concentrations and distributions of polycyclic aromatic hydrocarbons in surface sediments from the Qatar marine environment. Mar Pollut Bull 126:58–62. https://doi.org/10.1016/j.marpolbul.2017.10.093
Howard IC, Okpara KE, Techato K (2021) Toxicity and risks assessment of polycyclic aromatic hydrocarbons in river bed sediments of an artisanal crude oil refining area in the Niger Delta Nigeria. Water 13(22):3295. https://doi.org/10.3390/w13223295
Incardona JP, Scholz NL (2016) The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquat Toxicol 177:515–525
Kumar KS, Nair SM, Salas PM, Prashob Peter KJ, Ratheesh Kumar CS (2016) Aliphatic and polycyclic aromatic hydrocarbon contamination in surface sediment of the Chitrapuzha River South West India. Chem Ecol 32(2):117–135. https://doi.org/10.1080/02757540.2015.1125890
Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by Bacteria and Fungi: a mini review. Biores Technol 224:25–33. https://doi.org/10.1016/j.biortech.2016.11.095
Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19(1):81–97
Mote S, Kumar R, Naik BG, Ingole BS (2015) Polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in beaked sea snake Enhydrina schistose (Daudin, 1803) from the Mandovi Estuary, Goa. Bull Environ Contam Toxicol 94:171–177. https://doi.org/10.1007/s00128-014-1439-7
Patel KS, Ramteke S, Naik Y, Sahu BL, Sharma S, Lintelmann J, Georg M (2015) Contamination of environment with polycyclic aromatic hydrocarbons in India. J Environ Protection 6(11):1268. https://doi.org/10.4236/jep.2015.611111
Penko L, Bajt O (2019) Aliphatic and polycyclic aromatic hydrocarbons in surface seawater of the GULF of Trieste (northern ADRIATIC). Mar Pollut Bull 142:103–111. https://doi.org/10.1016/j.marpolbul.2019.03.027
Pradhap D, Gandhi KS, Krishnakumar S, Neelavannan K, Radhakrishnan K, Saravanan P (2021) Baseline distributions and sources of polycyclic aromatic hydrocarbons (PAHs) in reef-associated sediments of Vembar group of Islands, Gulf of Mannar India. Mar Pollut Bull 171:112727. https://doi.org/10.1016/j.marpolbul.2021.112727
Rajpara RK, Dudhagara DR, Bhatt JK, Gosai HB, Dave BP (2017) Polycyclic aromatic hydrocarbons (PAHs) at the Gulf of Kutch, Gujarat, India: occurrence, source apportionment, and toxicity of PAHs as an emerging issue. Mar Pollut Bull 119(2):231–238. https://doi.org/10.1016/j.marpolbul.2017.04.039
Ramzi A, Rahman KH, Gireeshkumar TR, Balachandran KK, Jacob C, Chandramanohanakumar N (2017) Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin Estuary India. Mar Pollut Bull 114(2):1081–1087. https://doi.org/10.1016/j.marpolbul.2016.10.015
Sarkar A, Bhagat J, Sarker S (2014) Evaluation of impairment of DNA in marine gastropod, Morula granulata as a biomarker of marine pollution. Ecotoxicol Environ Saf 106:253–261. https://doi.org/10.1016/j.ecoenv.2014.04.023
Sarkar A, Gaitonde DC, Sarkar A, Vashistha D, D’Silva C, Dalal SG (2008) Evaluation of impairment of DNA integrity in marine gastropods (Cronia contracta) as a biomarker of genotoxic contaminants in coastal water around Goa, West coast of India. Ecotoxicol Environ Saf 71(2):473–482. https://doi.org/10.1016/j.ecoenv.2008.01.006
Sarkar S, Vashistha D, Sarker MS, Sarkar A (2018) DNA damage in marine rock oyster (Saccostrea Cucullata) exposed to environmentally available PAHs and heavy metals along the Arabian Sea coast. Ecotoxicol Environ Saf 151:132–143. https://doi.org/10.1016/j.ecoenv.2018.01.004
Souza T, Jennen D, van Delft J, van Herwijnen M, Kyrtoupolos S, Kleinjans J (2016) New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol 90:1449–1458
Udofia US, Ameh C, Miller E, Ekpenyong MS (2021) Investigating the origin and tissue concentration of polycyclic aromatic hydrocarbons in seafood and health risk in Niger Delta, Nigeria. Environ Sci.: Process Impacts 23(11):1803–1814. https://doi.org/10.1039/d1em00249j
US EPA-United States Environmental Protection Agency (2007) Method 3550C - Ultrasonic Extraction. https://www.epa.gov/sites/production/files/201512/documents/3550c.pdf. Accessed 10 Oct 2022
Wang D, Ma J, Li H, Zhang X (2018) Concentration and potential ecological risk of PAHs in different layers of soil in the petroleum-contaminated areas of the Loess Plateau, China. Int J Environ Res Pub Health 15:1785. https://doi.org/10.3390/ijerph15081785
Yu Y, Yu Z, Wang Z, Lin B, Li L, Chen X, Ma R (2018) Polycyclic aromatic hydrocarbons (PAHs) in multi-phases from the drinking water source area of the Pearl River Delta (PRD) in South China: distribution, source apportionment, and risk assessment. Environ Sci Pollut Res 25(13):12557–12569
Yunker MB, Macdonald RW, Goyette D, Paton DW, Fowler BR, Sullivan D, Boyd J (1999) Natural and anthropogenic inputs of hydrocarbons to the Strait of Georgia. Sci Total Environ 225(3):181–209
Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515. https://doi.org/10.1007/s11356-018-1421-8
