Risk Measures for Particle-Filtering-Based State-of-Charge Prognosis in Lithium-Ion Batteries

IEEE Transactions on Industrial Electronics - Tập 60 Số 11 - Trang 5260-5269 - 2013
Marcos E. Orchard1, Pablo Alejandro Hevia Koch1, Bin Zhang2, Liang Tang3
1Dept. of Electr. Eng., Univ. de Chile, Santiago, Chile
2Dept of Electr. Eng., Univ. of South Carolina, Columbia, SC, USA
3Impact Technol. LLC, Rochester, NY, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

orchard, 2010, Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices, Stud Informat Control, 19, 209, 10.24846/v19i3y201001

10.1109/TIE.2010.2058072

10.1109/TIM.2008.2005965

10.1109/TIE.2010.2043035

ran, 2010, Prediction of state of charge of lithium-ion rechargeable battery with electrochemical impedance spectroscopy theory, Proc IEEE ICIEA, 684

10.1109/TSMCC.2010.2089979

rockafellar, 2007, Coherent approaches to risk in optimization under uncertainty, Proc Tuts Oper Res INFORMS, 31

artzner, 1997, Thinking coherently, Risk, 10, 68

10.1111/1467-9965.00068

10.1007/978-3-662-04790-3_1

10.1007/978-1-4757-3437-9

andrieu, 2001, Sequential Monte Carlo Methods in Practice

10.1109/78.978374

musso, 2001, Sequential Monte Carlo Methods in Practice

10.1177/0142331208092026

van der merwe, 2006, The unscented particle filter

10.1023/A:1008935410038

orchard, 2009, Outer feedback correction loops in particle filtering-based prognostic algorithms: Statistical performance comparison, Stud Informat Control, 18, 295

10.2307/2670179

10.1016/S0378-7753(99)00079-8

qingsheng, 2010, Battery state-of-charge estimation in electric vehicle using Elman neural network method, Proc 29th CCC, 5999

10.1109/SIITME.2009.5407364

tang, 2011, Li-ion battery parameter estimation for state of charge, Proc ACC, 941

di, 2011, Estimation of lithium-ion battery state of charge, Proc 30th CCC, 6256

10.1177/1748006XJRR342

10.1109/TVT.2009.2028572