Rings or daggers, axes or fibulae have a different composition? A multivariate study on Central Italy bronzes from eneolithic to early iron age

Springer Science and Business Media LLC - Tập 9 - Trang 1-17 - 2015
Giovanni Visco1, Susanne H Plattner1, Giuseppe Guida2, Stefano Ridolfi3, Giovanni E Gigante1
1University “Sapienza”, Rome, Italy
2Central Institute of Restoration – ISCR, Rome, Italy
3Ars Mensurae, Rome, Italy

Tóm tắt

One of the main concerns for archaeo-metallurgists and archaeologists is to determine to what extent ancient craftsmen understood the effect of metal alloy composition and were able to control it in order to produce objects with the most suitable features. This problem can be investigated by combining compositional analyses of a high number of ancient artefacts with correlation analyses of the objects’ age, production site, destination of usage etc. – and thus chemometric data treatment is carried out. In this study, multivariate analyses were performed on a matrix composed of elemental compositional data from 134 archaeological bronze objects, obtained by XRF analyses. Analysed objects have been dated back from the Eneolithic Period to the end of the Bronze Age including the early Iron Age and were excavated in Central Italy (mainly Abruzzo Region). Chemometric analysis was performed attempting to visualise clouds of objects through PCA. In parallel and independently, object grouping was attempted using several different approaches, based on object characteristics (e.g. shape, weight, type of use – cutting or hitting and age) following indications given by archaeologists (or derived from the archaeological context). Furthermore, case-tailored data pretreatment (logratio-centred scaling) was used, but no homogeneous groups could be identified. By using chemometric data analysis, homogeneous groups of objects could not be detected, meaning that compositional data of alloys is not correlated with the considered objects’ characteristics. This favours the conclusion that – without discussing the ascertained ability of ancient foundry-men - they had also already discovered the convenience of recycling broken objects thus producing a more or less similar bronze alloy each time, depending on materials’ availability; necessary mechanical characteristics could then be obtained by post processing.

Tài liệu tham khảo

Sharp D. Time to leave Ötzi alone? Lancet. 2002;360(9345):1530. Oeggl K. The significance of the Tyrolean Iceman for the archaeobotany of Central Europe. Veg Hist Archaeobot. 2009;18(1):1–11. Radivojević M, Rehren T, Pernicka E, Šljivar D, Brauns M, Borić D. On the origins of extractive metallurgy: new evidence from Europe. J Archaeol Sci. 2010;37(11):2775–87. Rehren T, Boscher L, Pernicka E. Large scale smelting of speiss and arsenical copper at Early Bronze Age Arisman. Iran J Archaeol Sci. 2012;39(6):1717–27. Frost RL, Sejkora J, Čejka J, Keeffe EC. Vibrational spectroscopic study of the arsenate mineral strashimirite Cu8(AsO4)4(OH)4 · 5H2O - Relationship to other basic copper arsenates. Vib Spectrosc. 2009;50(2):289–97. Gettens RJ. The Free Chinese Bronzes, Technical Studies, vol. II. Washington DC: Smithsonian Institute Oriental Studies; 1970. Gettens RJ. The corrosion of metal antiquities. In: Annual Report of the Board of Regents on the Smithsonian Institution. Washingto: US Gov. Print. Off; 1964. Ling H, Qingrong Z, Min G. Characterization of corroded bronze Ding from the Yin Ruins of China. Corrosion Sci. 2007;49(6):2534–46. Robbiola L, Blengino JM, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corrosion Sci. 1998;40(12):2083–111. Gliozzo E, Arletti R, Cartechini L, Imberti S, Kockelmann WA, Memmi I, et al. Non-invasive chemical and phase analysis of Roman bronze artefacts from Thamusida (Morocco). Appl Radiat Isot. 2010;68(12):2246–51. Stambalov T, Bleck RD, Eichelmann N. Korrosion und Konservierung von Kunst und Kulturgut aus Metall I-II, Museum für ur-und frühgeschichte thueringen, Weimar (Restaurierung und Museumstechnik 8–9), 1988. BCIN Number: 94459. Tylecote RF. The effect of soil conditions on the long-term corrosion of buried tin bronzes and copper. J Archaeol Sci. 1979;6(4):345–68. Scott DA. An examination of the patina and corrosion morphology of someRoman Bronzes. J Am Inst Conserv. 1994;33(1):1–23. Ingo GM, de Caro T, Riccucci C, Angelini E, Grassini S, Balbi S, et al. Large scale investigation chemical composition, structure and corrosion mechanism of bronze archaeological artefacts from Mediterranean basin. Appl Phys A-Mater Sci Process. 2006;83(4):513–20. Wilson AL. Elemental analysis of pottery in the study of its provenance. J Archaeol Sci. 1978;5(3):219–36. Visco G, Ridolfi S, Plattner SH, Gigante GE. Razors, horse bits or axes; search of the different composition in common use bronze villanovan objects (VIII-VII Centuryb.C., Italy) by multivariate analysis. Curr Anal Chem. 2010;6(1):11–8. Bruno P, Caselli M, Daresta BE, de Gennaro G, de Pinto V, Ielpo P, et al. Method for the determination of Cu(II), Ni(II), Co(II), Fe(II), and Pd(II) at ppb/subppb levels by ion chromatography. J Liq Chromatogr Relat Technol. 2007;30(4):477–87. Shalev S, Shilstein SS, Yekutieli Y. XRF study of archaeological and metallurgical material from an ancient copper-smelting site near Ein-Yahav. Israel Talanta. 2006;70(5):909–13. Bietti Sestieri AM: L’età del Bronzo finale nella penisola italiana. In Padusa, Bollettino del Centro Polesano di Studi Storici, Archeologici ed Etnografici, Anno XLIV, Nuova serie, Fabrizio Serra Ed., Pisa, IT, 2008, pp.7-54. ISSN 0393–0149. Phillips GB. The composition of some ancient bronze in the dawn of the art of metallurgy. Am Anthropologist New Series. 1922;24(2):129–43. Verma SP, Quiroz-Ruiz A. Critical values for six Dixon tests for outliers in normal samples up to sizes 100, and applications in science and engineering. Rev Mex Cienc Geol. 2006;23(2):133–61. Peirce B. Criterion for rejection of doubtful observations. Astron J. 1852;2(45):161–3. Peirce B. On Peirce’s Criterion. Proc Am Acad Arts Sci. 1877;13(23):348–51. Chauvenet W. A Manual of Spherical and Practical Astronomy, vol. II. London: J.B. Lippincott Ed; 1868. p. 558–66. Cadima J, Jolliffe I. On relationships between uncentred and column-centredprincipal component analysis. Pak J Stat. 2009;25(4):473–503. Bro R, Smilde AK. Centering and scaling in component analysis. J Chemometr. 2003;17(1):16–33. Liang Y-Z, Kvalheim OM. A two-way procedure for background correction of chromatographic/spectroscopic data by congruence analysis and least-squares fit of the zero-component regions: comparison with double-centering. Chemometrics Intell Lab Syst. 1993;18(3):265–79. Aitchison J, Barcel’o-Vidal C, Mart’ın-Fern’andez JA, Pawlowsky-Glahn V. Logratio analysis and compositional distance. Math Geosci. 2000;32(3):271–5. Martın-Fernandez JA, Barcelo-Vidal C, Pawlowsky-Glahn V. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geosci. 2003;35(3):253–78. Campanella L, Gregori E, Tomassetti M, Visco G. Identification of different types of imperial age marble finds using instrumental chemical analysis and pattern recognition analysis. Ann Chim. 2001;91(11–12):701–18. Cecere F, Carraro A, Ferro D, Visco G. Individuation of characteristic parameters of “glass paste” of Meridional Etruria by the use of scientific methodologies. Microchem J. 2008;88(2):130–5. Baliulescu GE. New concepts of sampling. Microchem J. 1996;53(1):65–8. Giardino C, Gigante GE, Guida G, Mazzeo R: EDXRF and metallography for in situ simultaneous analysis of archaeological metal artifacts. In Proceedings of 5th International Conference on non-destructive testing, micro analytical methods and environmental evaluation for study and conservation of work of art, Budapest (Hungary) September 24–28, 1996, 327–337.