Rigorous analysis of the solution of the Boltzmann equation for a Maxwell-Lorentz gas in an electric field

Springer Science and Business Media LLC - Tập 7 - Trang 119-136 - 2008
G. L. Braglia1, L. Ferrari1
1Istituto di Fisica dell'Università, Parma

Tóm tắt

In this paper a detailed analysis of the solution of the Boltzmann equation for a Maxwell-Lorentz gas in an electric field is presented. Both steady-state and unsteady-state distributions are considered. The conditions under which the isotropic part of the electron velocity distribution evolves towards a Maxwellian distribution are widely discussed. Results of other authors are tested in the light of the present theory.

Tài liệu tham khảo

S. L. Paveri-Fontana:Lett. Nuovo Cimento,4, 1259 (1970). M. Bayet, J. L. Delcroix andJ. F. Denisse:Journ. Phys. Rad.,17, 1005 (1956). See alsoCompt. Rend.,244,171 (1957). M. Bayet, J. L. Delcroix andJ. F. Denisse:Journ. Phys. Rad.,15, 795 (1954);16, 274 (1955);17, 923 (1956). J. Naze:Compt. Rend.,251, 651, 854, 2284 (1960). I. S. Gradshteyn andI. M. Etzhik:Table of Integrals, Series, and Products (New York and London, 1965). For an alternative derivation of this result seeG. L. Braglia:Nuovo Cimento,70 B, 169 (1970). G. L. Braglia:Nuovo Cimento,58 B, 352 (1968) and references quoted therein. M. Abramowitz andI. A. Stegun:Randbook of Mathematical Functions (New York, 1965), p. 785, eq. 22.12.7. K. Andersen andK. E. Shulee:Journ. Chem. Phys.,40, 633 (1964). D. H. Sampson andJ. Enoch:Phys. Fluids,6, 28 (1963).