Rigorous analysis of the solution of the Boltzmann equation for a Maxwell-Lorentz gas in an electric field
Tóm tắt
In this paper a detailed analysis of the solution of the Boltzmann equation for a Maxwell-Lorentz gas in an electric field is presented. Both steady-state and unsteady-state distributions are considered. The conditions under which the isotropic part of the electron velocity distribution evolves towards a Maxwellian distribution are widely discussed. Results of other authors are tested in the light of the present theory.
Tài liệu tham khảo
S. L. Paveri-Fontana:Lett. Nuovo Cimento,4, 1259 (1970).
M. Bayet, J. L. Delcroix andJ. F. Denisse:Journ. Phys. Rad.,17, 1005 (1956). See alsoCompt. Rend.,244,171 (1957).
M. Bayet, J. L. Delcroix andJ. F. Denisse:Journ. Phys. Rad.,15, 795 (1954);16, 274 (1955);17, 923 (1956).
J. Naze:Compt. Rend.,251, 651, 854, 2284 (1960).
I. S. Gradshteyn andI. M. Etzhik:Table of Integrals, Series, and Products (New York and London, 1965).
For an alternative derivation of this result seeG. L. Braglia:Nuovo Cimento,70 B, 169 (1970).
G. L. Braglia:Nuovo Cimento,58 B, 352 (1968) and references quoted therein.
M. Abramowitz andI. A. Stegun:Randbook of Mathematical Functions (New York, 1965), p. 785, eq. 22.12.7.
K. Andersen andK. E. Shulee:Journ. Chem. Phys.,40, 633 (1964).
D. H. Sampson andJ. Enoch:Phys. Fluids,6, 28 (1963).