Rigorous Solution of Strongly Coupled SO(N) Lattice Gauge Theory in the Large N Limit

Springer Science and Business Media LLC - Tập 366 - Trang 203-268 - 2019
Sourav Chatterjee1
1Department of Statistics, Stanford University, Stanford, USA

Tóm tắt

The main result of this paper is a rigorous computation of Wilson loop expectations in strongly coupled SO(N) lattice gauge theory in the large N limit, in any dimension. The formula appears as an absolutely convergent sum over trajectories in a kind of string theory on the lattice, demonstrating an explicit gauge-string duality. The generality of the proof technique may allow it to be extended other gauge groups.

Tài liệu tham khảo

Balaban T.: Regularity and decay of lattice Green’s functions. Commun. Math. Phys. 89(4), 571–597 (1983) Balaban T.: Ultraviolet stability of three-dimensional lattice pure gauge field theories. Commun. Math. Phys. 102, 255–275 (1985) Balaban T.: The variational problem and background fields in renormalization group method for lattice gauge theories. Commun. Math. Phys. 102(2), 277–309 (1985) Balaban T.: Renormalization group approach to lattice gauge field theories. I: generation of effective actions in a small field approximation and a coupling constant renormalization in 4D. Commun. Math. Phys. 109, 249–301 (1987) Bhanot G., Heller U.M., Neuberger H.: The quenched Eguchi–Kawai model. Phys. Lett. B 113(1), 47–50 (1982) Brydges D., Fröhlich J., Seiler E.: On the construction of quantized gauge fields. I. General results. Ann. Phys. 121(1), 227–284 (1979) Brydges D.C., Fröhlich J., Seiler E.: Construction of quantised gauge fields. II. Convergence of the lattice approximation. Commun. Math. Phys. 71(2), 159–205 (1980) Brydges D.C., Fröhlich J., Seiler E.: On the construction of quantized gauge fields. III. The two-dimensional abelian Higgs model without cutoffs. Commun. Math. Phys. 79(3), 353–399 (1981) Charalambous N., Gross L.: The Yang–Mills heat semigroup on three-manifolds with boundary. Commun. Math. Phys. 317(3), 727–785 (2013) Chatterjee, S.: Concentration inequalities with exchangeable pairs. Ph.D. thesis, Stanford University (2005) Chatterjee S.: Stein’s method for concentration inequalities. Probab. Theory Relat. Fields 138(1-2), 305–321 (2007) Chatterjee S., Meckes E.: Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4, 257–283 (2008) Collins B., Guionnet A., Maurel-Segala E.: Asymptotics of unitary and orthogonal matrix integrals. Adv. Math. 222(1), 172–215 (2009) Driver B.K.: YM 2: continuum expectations, lattice convergence, and lassos. Commun. Math. Phys. 123(4), 575–616 (1989) Dunne, G.V., Ünsal, M.: New Methods in QFT and QCD: From large-N orbifold equivalence to bions and resurgence. Preprint arXiv:1601.03414 (2016) Eguchi T., Kawai H.: Reduction of dynamical degrees of freedom in the large-N gauge theory. Phys. Rev. Lett. 48(16), 1063 (1982) Ercolani N.M., McLaughlin K.D.T.-R.: Asymptotics of the partition function for random matrices via Riemann–Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not. 2003(14), 755–820 (2003) Ercolani N.M., McLaughlin K.D.T-R., Pierce V.U.: Random matrices, graphical enumeration and the continuum limit of Toda lattices. Commun. Math. Phys. 278(1), 31–81 (2008) Eynard, B.: Large-N expansion of the 2-matrix model. J. High Energy Phys. 2003(1), 051, (2003) Eynard, B.: Topological expansion for the 1-Hermitian matrix model correlation functions. J. High Energy Phys. 2005(11), 031 (2004) Eynard B., Orantin N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007) Eynard, B., Orantin, N.: Topological recursion in enumerative geometry and random matrices. J. Phys. A 42(29), 293001 (2009) Fröhlich J., Spencer T.: Massless phases and symmetry restoration in abelian gauge theories and spin systems. Commun. Math. Phys. 83(3), 411–454 (1982) Gonzalez-Arroyo A., Okawa M.: Twisted-Eguchi–Kawai model: a reduced model for large-N lattice gauge theory. Phys. Rev. D 27(10), 2397–2411 (1983) Göpfert M., Mack G.: Proof of confinement of static quarks in 3-dimensional U(1) lattice gauge theory for all values of the coupling constant. Commun. Math. Phys. 82(4), 545–606 (1982) Greensite J., Lautrup B.: First-order phase transition in four-dimensional SO(3) lattice gauge theory. Phys. Rev. Lett. 47(1), 9–11 (1981) Gross D.J., Witten E.: Possible third-order phase transition in the large-N lattice gauge theory. Phys. Rev. D 21(2), 446–453 (1980) Gross L.: Convergence of U(1)3 lattice gauge theory to its continuum limit. Commun. Math. Phys. 92(2), 137–162 (1983) Gross L., King C., Sengupta A.: Two dimensional Yang–Mills theory via stochastic differential equations. Ann. Phys. 194(1), 65–112 (1989) Guionnet A.: First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models. Commun. Math. Phys. 244(3), 527–569 (2004) Guionnet, A.: Random matrices and enumeration of maps. In: International Congress of Mathematicians, vol. III, pp. 623–636. European Mathematical Society, Zürich (2006) Guionnet A., Jones V.F.R., Shlyakhtenko D., Zinn-Justin P.: Loop models, random matrices and planar algebras. Commun. Math. Phys. 316(1), 45–97 (2012) Guionnet A., Maïda M.: Character expansion method for the first order asymptotics of a matrix integral. Probab. Theory Relat. Fields 132(4), 539–578 (2005) Guionnet, A., Novak, J.: Asymptotics of unitary multimatrix models: the Schwinger–Dyson lattice and topological recursion. Preprint arXiv:1401.2703 (2014) Guionnet A., Zeitouni O.: Large deviations asymptotics for spherical integrals. J. Funct. Anal. 188(2), 461–515 (2002) Guth A.H.: Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory. Phys. Rev. D 21(8), 2291–2307 (1980) Jaffe A., Witten E.: Quantum Yang–Mills Theory. The Millennium Prize Problems, pp. 129–152. Clay Mathematical Institute, Cambridge, MA (2006) Jafarov, J.: Wilson loop expectations in SU(N) lattice gauge theory. Preprint arXiv:1610.03821 (2016) Kovtun P., Yaffe M., Yaffe L.G.: Volume independence in large N c QCD-like gauge theories. J. High Energy Phys. 2007(6), 019 (2007) Lévy, T.: Yang–Mills measure on compact surfaces. Mem. Am. Math. Soc. 166(790) (2003) Lévy T.: Discrete and continuous Yang–Mills measure for non-trivial bundles over compact surfaces. Probab. Theory Relat. Fields 136(2), 171–202 (2006) Lévy, T.: The master field on the plane. Preprint arXiv:1112.2452 (2011) Lucini B., Panero M.: SU(N) gauge theories at large N. Phys. Rep. 526(2), 93–163 (2013) Lüscher M.: Construction of a self-adjoint, strictly positive transfer matrix for Euclidean lattice gauge theories. Commun. Math. Phys. 54, 283–292 (1977) Lüscher, M.: Properties and uses of the Wilson flow in lattice QCD. J. High Energy Phys. 2010(8), 071 (2010) Magnen J., Rivasseau V., Sénéor R.: Construction of YM 4 with an infrared cutoff. Commun. Math. Phys. 155, 325–383 (1993) Makeenko Y.M., Migdal A.A.: Exact equation for the loop average in multicolor QCD. Phys. Lett. B 88(1), 135–137 (1979) Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1997) Meckes, E.: An infinitesimal version of Stein’s method of exchangeable pairs. Ph.D. thesis, Stanford University (2006) Osterwalder K., Seiler E.: Gauge field theories on a lattice. Ann. Phys. 110(2), 440–471 (1978) Seiler E.: Upper bound on the color-confining potential. Phys. Rev. D 18(2), 482–483 (1978) Seiler E.: Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics. Springer, Berlin (1982) Sengupta A.: Quantum gauge theory on compact surfaces. Ann. Phys. 221(1), 17–52 (1993) Sengupta A.: Gauge Theory on Compact Surfaces. American Mathematical Society, Providence, RI (1997) Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematics, Statistics and Probability, vol. II, pp. 583–602. University of California Press, Berkeley, CA (1972) Stein, C.: Approximate computation of expectations. IMS Lecture Notes—Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA (1986) Stein, C.: The accuracy of the normal approximation to the distribution of the traces of powers of random orthogonal matrices. Technical Report No. 470, Stanford University Department of Statistics, 1995 (1995) ’t Hooft G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72(3), 461–473 (1974) Tomboulis E.T., Yaffe L.G.: Finite temperature SU(2) lattice gauge theory. Commun. Math. Phys. 100(3), 313–341 (1985) Yaffe M., Yaffe L.G.: Center-stabilized Yang–Mills theory: confinement and large N volume independence. Phys. Rev. D 78(6), 065035 (2008) Wadia, S.R.: A study of U(N) lattice gauge theory in 2-dimensions. Preprint arXiv:1212.2906 (2012) Wilson K.G.: Confinement of quarks. Phys. Rev. D 10(8), 2445–2459 (1974) Witten E.: Gauge theories and integrable lattice models. Nucl. Phys. B 322(3), 629–697 (1989) Witten E.: Gauge theories, vertex models, and quantum groups. Nucl. Phys. B 330(2), 285–346 (1990) Witten E.: Two dimensional gauge theories revisited. J. Geom. Phys. 9(4), 303–368 (1992)