Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings

Bruce Kleiner1, Bernhard Leeb2
1Department of Mathematics, University of Utah, Salt Lake City
2Fachbereich 17 Mathematik, Universität Mainz, Mainz

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. D. Aleksandrov, V. N. Berestovskij, I. G. Nikolaev, Generalized Riemannian Spaces,Russ. Math. Surveys 41, no. 3 (1986), 1–54.

M. T. Anderson andV. Schroeder, Existence of flats in manifolds of nonpositive curvature,Invent. Math. 85 (1986), no. 2, 303–315.

W. Ballmann,Lectures on spaces of nonpositive curvature, preprint 1995.

W. Ballmann, M. Gromov, V. Schroeder,Manifolds of nonpositive curvature, Birkhäuser, 1985.

N. Bourbaki,Groupes et Algèbres de Lie, ch. 4–6, Paris, Masson, 1981.

K. Brown,Buildings, Springer, 1989.

K. Brown, Five lectures on Buildings, p. 254–295, inGroup theory from a geometric viewpoint, Trieste, 1990.

F. Bruhat andJ. Tits, Groupes réductifs sur un corps local,Publ. Math. IHES 60 (1984), 5–184.

J. Cheeger andD. Ebin,Comparison theorems in Riemannian geometry, North Holland, 1975.

L. Van den Dries, A. J. Wilkie, On Gromov’s Theorem concerning groups of polynomial growth and elementary logic,J. of Algebra 89 (1984), 349–374.

P. Eberlein, Structure of manifolds of nonpositive curvature, in Springer LNM, vol. 1156 (1985), 86–153.

M. Gromov, Asymptotic invariants for infinite groups, inGeometric group theory, London Math. Soc. Lecture Notes Series182 (1993), vol. 2.

M. Gromov andP. Pansu, Rigidity of lattices: An introduction, inGeometric Topology: Recent developments, Springer LNM1504 (1991), 39–137.

L. C. Grove andC. T. Benson,Finite reflection groups, Springer GTM99, sec. ed., 1985.

J. E. Humphreys,Reflection groups and Coxeter groups, Cambridge studies in advanced mathematics29, Cambridge Univ. Press, 1990.

M. Kapovich, B. Kleiner andB. Leeb, Quasi-isometries preserve the de Rham decomposition, to appear inTopology.

M. Kapovich andB. Leeb, Asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds,GAFA, vol. 5, no. 3 (1995), 582–603.

B. Kleiner andB. Leeb,Rigidity of quasi-isometries for symmetric spaces of higher rank, Preprint, January 1995.

B. Kleiner andB. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings,C. R. Acad. Sci. Paris, Série I,324 (1997), 639–643.

B. Kleiner andB. Leeb,Groups quasi-isometric to symmetric spaces, Preprint, October 1996.

B. Leeb,A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Habilitationsschrift, Universität Bonn, Juni 1997.

G. D. Mostow,Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, vol. 78, 1973.

I. Nikolaev, The tangent cone of an Aleksandrov space of curvature ≤ K, to appear inManuscripta Mathematica.

P. Pansu, Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un,Ann. of Math. 129 (1989), 1–60.

M. Ronan,Lectures on Buildings, Perspectives in Mathematics, vol. 7, Academic Press, 1989.

R. Schwartz, Quasi-Isometric Rigidity and Diophantine Approximation,Acta Mathematica 177 (1996), 75–112.

J. Tits,Buildings of spherical type and finite BN-pairs, Springer LNM, vol. 386 (1974).

J. Tits, Immeubles de type affine, inBuildings and the geometry of diagrams, Proceedings Como, 1984, Springer LNM, vol. 1181 (1986), 159–190.

W. Thurston,The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1979.

P. Tukia, Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group,Acta. Math. 154 (1985), 153–193.