Riemannian geometry and matrix geometric means

Linear Algebra and Its Applications - Tập 413 Số 2-3 - Trang 594-618 - 2006
Rajendra Bhatia1, John Holbrook2
1Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Delhi, 110 016, India
2Department of Mathematics and Statistics, University of Guelph, Guelph, Ont., Canada N1G 2W1#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ando, 1979, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26, 203, 10.1016/0024-3795(79)90179-4

Ando, 2004, Geometric means, Linear Algebra Appl., 385, 305, 10.1016/j.laa.2003.11.019

Berger, 2003

Bhatia, 1997

Bhatia, 2003, On the exponential metric increasing property, Linear Algebra Appl., 375, 211, 10.1016/S0024-3795(03)00647-5

Bridson, 1999

Corach, 1993, Geodesics and operator means in the space of positive operators, Int. J. Math., 4, 193, 10.1142/S0129167X9300011X

Lawson, 2001, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly, 108, 797, 10.2307/2695553

Moakher, 2005, A differential geometric approach to the geometric mean of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 26, 735, 10.1137/S0895479803436937

M. Moakher, On the averaging of symmetric positive-definite tensors, 2004, preprint.

D. Petz, R. Temesi, Means of positive numbers and matrices, 2005, preprint.

Pusz, 1975, Functional calculus for sesquilinear forms and the purification map, Reports Math. Phys., 8, 159, 10.1016/0034-4877(75)90061-0

Trapp, 1984, Hermitian semidefinite matrix means and related matrix inequalities—an introduction, Linear and Multilinear Algebra, 16, 113, 10.1080/03081088408817613