Ricci-flat metrics on the complexification of a compact rank one symmetric space

manuscripta mathematica - Tập 80 Số 1 - Trang 151-163 - 1993
Matthew B. Stenzel1
1Department of Mathematics, University of California, 92521, Riverside, CA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abraham, R. and Marsden, J.: Foundations of Mechanics, 2nd ed. Benjamin/Cummings (1978)

Bando, S. and Kobayashi, R.: Ricci-flat Kähler metrics on affine algebraic manifolds.II. Math. Ann.287, 175–180 (1990)

Eguchi, T. and Hanson, A. J.: Asymptotically flat self-dual solutions to Euclidean gravity. Phys. Lett.74B (3), 249–251 (1978)

Gibbons, G. W. and Pope, C. N.: The positive action conjecture and asymptotically Euclidean metrics in quantum gravity. Commun. Math. Phys.66, 267–290 (1979)

Guillemin, V. and Stenzel, M.: Grauert tubes and the homogeneous Monge-Ampère equation. J. Differential Geometry34, 561–570 (1992)

Guillemin, V and Stenzel, M.: Grauert tubes and the homogeneous Monge-Ampère equation. II. J. Differential Geometry35, 627–641 (1992)

Guillemin, V. and Sternberg, S.: Geometric quantization and multiplicities of group representations. Invent. Math.67, 515–538 (1982)

Guillemin, V. and Sternberg, S.: Convexity and the moment map.II. Invent. Math.77, 533–546 (1984)

Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, 2nd ed. Academic Press (1978)

Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Volume II. John Wiley and Sons (1969)

Kobayashi, R.: Ricci-Flat Kähler metrics on affine algebraic manifolds and degenerations of Kähler-Einstein K3 surfaces. Advanced Studies in Pure Mathematics18–II, 137–228. San Diego: Academic Press (1990)

Lempert, L. and Szöke, R.: Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann.290, 689–712 (1991)

LeBrun, C.: Complete Ricci-flat metrics on ℂ n need not be flat. Proceedings of Symposia in Pure Mathematics52 (2), 297–304 (1991)

Matsushima, Y.: Espaces homogènes de Stein des groupes de Lie complexes. Nagoya Math. J.16, 205–218 (1960)

Morimoto, A. and Nagano, T.: On pseudo-conformal transformations of hypersurfaces. J. Math. Soc. Japan15 (3), 289–300 (1963)

Patrizio, G. and Wong, P. M.: Stein manifolds with compact symmetric centers. Math. Ann.289 (3), 355–382 (1991)

Stenzel, M.: An adapted complex structure on the cotangent bundle of a compact Riemannian homogeneous space. To appear in the Proceedings of the AMS.

Stenzel, M.: Kähler structures on cotangent bundles of real analytic Riemannian manifolds. Ph.D. thesis, MIT (1990)

Szöke, R.: Complex structures on tangent bundles of Riemannian manifolds Math. Ann.291, 409-428 (1991)

Tian, G. and Yau, S. T.: Complete Kähler manifolds with zero Ricci curvature. I. J. Am. Math. Soc.3 (3), 579–609 (1990)

Tian, G. and Yau, S. T.: Complete Kähler manifolds with zero Ricci curvature.II. Invent. Math.100 (1991)