Ricci Curvature of Finite Markov Chains via Convexity of the Entropy

Archive for Rational Mechanics and Analysis - Tập 206 Số 3 - Trang 997-1038 - 2012
Matthias Erbar1, Jan Maas1
1Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115, Bonn, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel, 2008

Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Preprint at arXiv:1106.2090, 2011

Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Preprint at arXiv:1109.0222, 2011

Ané C., Ledoux M.: On logarithmic Sobolev inequalities for continuous time random walks on graphs. Probab. Theory Relat. Fields 116(4), 573–602 (2000)

Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Math., vol. 1123. Springer, Berlin, 177–206, 1985

Bauer, F., Jost, J., Liu, S.: Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. Preprint at arXiv:1105.3803, 2011

Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

Bobkov S.G., Götze F.: Discrete isoperimetric and Poincaré-type inequalities. Probab. Theory Relat. Fields 114(2), 245–277 (1999)

Bobkov S.G., Houdré C., Tetali P.: The subgaussian constant and concentration inequalities. Isr. J. Math. 156, 255–283 (2006)

Bobkov S.G., Ledoux M.: On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 156(2), 347–365 (1998)

Bobkov S.G., Tetali P.: Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19(2), 289–336 (2006)

Bonciocat A.-I., Sturm K.-Th.: Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 256(9), 2944–2966 (2009)

Buttazzo, G.: Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Research Notes in Mathematics Series. Longman Scientific and Technical, Harlow, 1989

Caputo P., Dai Pra P., Posta G.: Convex entropy decay via the Bochner-Bakry-Emery approach. Ann. Inst. Henri Poincaré Probab. Stat. 45(3), 734–753 (2009)

Chow S.-N., Huang W., Li Y., Zhou H.: Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Rational Mech. Anal. 203, 969–1008 (2012)

Daneri S., Savaré G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40(3), 1104–1122 (2008)

Dolbeault J., Nazaret B., Savaré G.: A new class of transport distances between measures. Calc. Var. Partial Differ. Equ. 34(2), 193–231 (2009)

Erbar M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 1–23 (2010)

Fang S., Shao J., Sturm K.-Th.: Wasserstein space over the Wiener space. Probab. Theory Relat. Fields 146(3–4), 535–565 (2010)

Gigli, N., Kuwada, K.: Ohta. Heat flow on Alexandrov spaces. Preprint at arXiv:1008.1319, 2010

Gozlan N., Léonard C.: Transport inequalities. A survey. Markov Process. Relat. Fields 16(4), 635–736 (2010)

Hua, B., Jost, J., Liu, S.: Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. Preprint at arXiv:1107.2826, 2011

Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs. Preprint at arXiv:1103.4037, 2011

Ledoux, M.: The concentration of measure phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence, 2001

Lin Y., Yau S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17(2), 343–356 (2010)

Lott J., Villani C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

Maas J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)

McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Preprint, 2011

Mielke A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329–1346 (2011)

Ohta S.-I., Sturm K.-Th.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62(10), 1386–1433 (2009)

Ollivier Y.: Ricci curvature of metric spaces. C. R. Math. Acad. Sci. Paris 345(11), 643–646 (2007)

Ollivier Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

Ollivier, Y., Villani, C.: A curved Brunn-Minkowski inequality on the discrete hypercube. Preprint at arXiv:1011.4779, 2010

Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

Otto F., Villani C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

Otto F., Westdickenberg M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227–1255 (2005)

von Renesse M.-K., Sturm K.-Th.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

Sammer M., Tetali P.: Concentration on the discrete torus using transportation. Combin. Probab. Comput. 18(5), 835–860 (2009)

Sturm K.-Th.: On the geometry of metric measure spaces. I and II. Acta Math. 196(1), 65–177 (2006)

Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, 2003

Villani C.: Optimal transport, Old and new. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin, 2009