Ricci Curvature of Finite Markov Chains via Convexity of the Entropy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel, 2008
Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Preprint at arXiv:1106.2090, 2011
Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Preprint at arXiv:1109.0222, 2011
Ané C., Ledoux M.: On logarithmic Sobolev inequalities for continuous time random walks on graphs. Probab. Theory Relat. Fields 116(4), 573–602 (2000)
Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Math., vol. 1123. Springer, Berlin, 177–206, 1985
Bauer, F., Jost, J., Liu, S.: Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. Preprint at arXiv:1105.3803, 2011
Benamou J.-D., Brenier Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)
Bobkov S.G., Götze F.: Discrete isoperimetric and Poincaré-type inequalities. Probab. Theory Relat. Fields 114(2), 245–277 (1999)
Bobkov S.G., Houdré C., Tetali P.: The subgaussian constant and concentration inequalities. Isr. J. Math. 156, 255–283 (2006)
Bobkov S.G., Ledoux M.: On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal. 156(2), 347–365 (1998)
Bobkov S.G., Tetali P.: Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19(2), 289–336 (2006)
Bonciocat A.-I., Sturm K.-Th.: Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 256(9), 2944–2966 (2009)
Buttazzo, G.: Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Research Notes in Mathematics Series. Longman Scientific and Technical, Harlow, 1989
Caputo P., Dai Pra P., Posta G.: Convex entropy decay via the Bochner-Bakry-Emery approach. Ann. Inst. Henri Poincaré Probab. Stat. 45(3), 734–753 (2009)
Chow S.-N., Huang W., Li Y., Zhou H.: Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Rational Mech. Anal. 203, 969–1008 (2012)
Daneri S., Savaré G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40(3), 1104–1122 (2008)
Dolbeault J., Nazaret B., Savaré G.: A new class of transport distances between measures. Calc. Var. Partial Differ. Equ. 34(2), 193–231 (2009)
Erbar M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 1–23 (2010)
Fang S., Shao J., Sturm K.-Th.: Wasserstein space over the Wiener space. Probab. Theory Relat. Fields 146(3–4), 535–565 (2010)
Gigli, N., Kuwada, K.: Ohta. Heat flow on Alexandrov spaces. Preprint at arXiv:1008.1319, 2010
Gozlan N., Léonard C.: Transport inequalities. A survey. Markov Process. Relat. Fields 16(4), 635–736 (2010)
Hua, B., Jost, J., Liu, S.: Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. Preprint at arXiv:1107.2826, 2011
Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)
Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs. Preprint at arXiv:1103.4037, 2011
Ledoux, M.: The concentration of measure phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence, 2001
Lin Y., Yau S.-T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17(2), 343–356 (2010)
Lott J., Villani C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)
Maas J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)
Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Preprint, 2011
Mielke A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329–1346 (2011)
Ohta S.-I., Sturm K.-Th.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62(10), 1386–1433 (2009)
Ollivier Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)
Ollivier, Y., Villani, C.: A curved Brunn-Minkowski inequality on the discrete hypercube. Preprint at arXiv:1011.4779, 2010
Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)
Otto F., Villani C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)
Otto F., Westdickenberg M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227–1255 (2005)
von Renesse M.-K., Sturm K.-Th.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)
Sammer M., Tetali P.: Concentration on the discrete torus using transportation. Combin. Probab. Comput. 18(5), 835–860 (2009)
Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, 2003