Ribotoxic Stress Response to the Trichothecene Deoxynivalenol in the Macrophage Involves the Src Family Kinase Hck
Tóm tắt
Từ khóa
Tài liệu tham khảo
Azcona-Olivara, J. I., Ouyang, Y., Murtha, J., Chu, F. S., and Pestka, J. J. (1995). Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): Relationship to toxin distribution and protein synthesis inhibition. Toxicol. Appl. Pharmacol.133,109–120.
Bain, J., McLauchlan, H., Elliott, M., and Cohen, P. (2003). The specificities of protein kinase inhibitors: An update. Biochem. J.371,199–204.
Beaty, C. D., Franklin, T. L., Uehara, Y., and Wilson, C. B. (1994). Lipopolysaccharide-induced cytokine production in human monocytes: Role of tyrosine phosphorylation in transmembrane signal transduction. Eur. J. Immunol.24,1278–1284.
Biggs, T. E., Cooke, S. J., Barton, C. H., Harris, M. P., Saksela, K., and Mann, D. A. (1999). Induction of activator protein 1 (AP-1) in macrophages by human immunodeficiency virus type-1 NEF is a cell-type-specific response that requires both hck and MAPK signaling events. J. Mol. Biol.290,21–35.
Boggon, T. J., and Eck, M. J. (2004). Structure and regulation of Src family kinases. Oncogene23,7918–7927.
Cameron, P., Smith, S. J., Giembycz, M. A., Rotondo, D., and Plevin, R. (2003). Verotoxin activates mitogen-activated protein kinase in human peripheral blood monocytes: Role in apoptosis and proinflammatory cytokine release. Br. J. Pharmacol.140,1320–1330.
Chung, Y. J., Yang, G. H., Islam, Z., and Pestka, J. J. (2003a). Up-regulation of macrophage inflammatory protein-2 and complement 3A receptor by the trichothecenes deoxynivalenol and satratoxin G. Toxicology186,51–65.
Chung, Y. J., Zhou, H. R., and Pestka, J. J. (2003b). Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicol. Appl. Pharmacol.193,188–201.
Erickson, F. L., Nika, J., Rippel, S., and Hannig, E. M. (2001). Minimum requirements for the function of eukaryotic translation initiation factor 2. Genetics158,123–132.
Ernst, M., Inglese, M., Scholz, G. M., Harder, K. W., Clay, F. J., Bozinovski, S., Waring, P., Darwiche, R., Kay, T., Sly, P., et al. (2002). Constitutive activation of the SRC family kinase Hck results in spontaneous pulmonary inflammation and an enhanced innate immune response. J. Exp. Med.196,589–604.
Fernandez, J., Yaman, I., Sarnow, P., Snider, M. D., and Hatzoglou, M. (2002). Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor elF2α. J. Biol. Chem.277,19198–19205.
Hanke, J. H., Gardner, J. P., Dow, R. L., Changelian, P. S., Brissette, W. H., Weringer, E. J., Pollok, B. A., and Connelly, P. A. (1996). Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor: Study of Lck- and FynT-dependent T cell activation. Amer. Soc. Biochem. Molec. Biol.271,695–701.
Hassoun, E. A., and Wang, X. (1999). Time- and concentration-dependent production of superoxide anion, nitric oxide, DNA damage and cellular death by ricin in the J774A.1 macrophage cells. J. Biochem. Mol. Toxicol.13,179–185.
Hassoun, E., and Wang, X. (2000). Ricin-induced toxicity in the macrophage J744A.1 cells: The role of TNF-alpha and the modulation effects of TNF-α polyclonal antibody. J. Biochem. Mol. Toxicol.14,95–101.
Henghold, W. B. (2004). Other biologic toxin bioweapons: Ricin, staphylococcal enterotoxin B, and trichothecene mycotoxins. Dermatol. Clin.22,257–262.
Higuchi, S., Tamura, T., and Oda, T. (2003). Cross-talk between the pathways leading to the induction of apoptosis and the secretion of tumor necrosis factor-alpha in ricin-treated RAW 264.7 cells. J. Biochem. (Tokyo)134,927–933.
Hofmann, M., Zaper, J., Bernd, A., Bereiter-Hahn, J., Kaufmann, R., and Kippenberger, S. (2004). Mechanical pressure-induced phosphorylation of p38 mitogen-activated protein kinase in epithelial cells via Src and protein kinase C. Biochem. Biophys. Res. Com.316,673–679.
Iordanov, M. S., Pribnow, D., Magun, J. L., Dinh, T. H., Pearson, J. A., Chen, S. L., and Magun, B. E. (1997). Ribotoxic stress response: Activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol. Cell Biol.17,3373–3381.
Kebache, S., Zuo, D., Chevet, E., and Larose, L. (2002). Modulation of protein translation by Nck-1. Proc. Natl. Acad. Sci. U.S.A.99,5406–5411.
Khadaroo, R. G., Parodo, J., Powers, K. A., Papia, G., Marshall, J. C., Kapus, A., and Rotstein, O. D. (2003). Oxidant-induced priming of the macrophage involves activation of p38 mitogen-activated protein kinase through an Src-dependent pathway. Surgery134,242–246.
Kinser, S., Jia, Q., Li, M., Laughter, A., Cornwell, P., Corton, J. C., and Pestka, J. (2004). Gene expression profiling in spleens of deoxynivalenol-exposed mice: Immediate early genes as primary targets. J. Toxicol. Environ. Health A67,1423–1441.
Knapp, K. M., and English, B. K. (2000). Ceramide-mediated stimulation of inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages requires tyrosine kinase activity. J. Leukoc. Biol.67,735–741.
Konakova, M., Hucho, F., and Schleuning, W. D. (1998). Downstream targets of urokinase-type plasminogen-activator-mediated signal transduction. Eur. J. Biochem.253,421–429.
Korade-Mirnics, Z., and Corey, S. J. (2000). Src-kinase mediated signaling in leukocytes. J. Leukoc. Biol.68,603–613.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227,680–685.
Laskin, J. D., Heck, D. E., and Laskin, D. L. (2002). The ribotoxic stress response as a potential mechanism for MAP kinase activation in xenobiotic toxicity. Toxicol. Sci.69,289–291.
Li, S., Ouyang, Y. L., Dong, W., and Pestka, J. J. (1997). Superinduction of IL-2 gene expression by vomitoxin (deoxynivalenol) involves increased mRNA stability. Toxicol. Appl. Pharmacol.147,331–342.
Li, S., Ouyang, Y., Yang, G. H., and Pestka, J. J. (2000). Modulation of transcription factor AP-1 activity in murine EL-4 thymoma cells by vomitoxin (deoxynivalenol). Toxicol. Appl. Pharmacol.163,17–25.
Liu, Y., Bishop, A., Witucki, L., Kraybill, B., Shimizu, E., Tsien, J., Ubersax, J., Blethrow, J., Morgan, D. O., and Shokat, K. M. (1999). Structural basis for selective inhibition of Src family kinases by PP1. Chem. Biol.6,671–678.
Lowell, C. A. (2004). Src-family kinases: Rheostats of immune cell signaling. Mol. Immunol.41,631–643.
Lowell, C. A., and Berton, G. (1998). Resistance to endotoxic shock and reduced neutrophil migration in mice deficient for the Src-family kinases Hck and Fgr. Proc. Natl. Acad. Sci. U.S.A.95,7580–7584.
Madsen, J. M. (2001). Toxins as weapons of mass destruction. A comparison and contrast with biological-warfare and chemical-warfare agents. Clin. Lab. Med.21,593–605.
Mengeling, W. L., Vorwald, A. C., Cornick, N. A., Lager, K. M., and Moon, H. W. (2001). In vitro detection of Shiga toxin using porcine alveolar macrophages. J. Vet. Diagn. Invest13,421–424.
Mocsai, A., Jakus, Z., Vantus, T., Berton, G., Lowell, C. A., and Ligeti, E. (2000). Kinase pathways in chemoattractant-induced degranulation of neutrophils: The role of p38 mitogen-activated protein kinase activated by Src family kinases. J. Immunol.164,4321–4331.
Moon, Y., and Pestka, J. J. (2003). Cyclooxygenase-2 mediates IL-6 upregulation by vomitoxin (deoxynivalenol) in vitro and in vivo. Toxicol. Appl. Pharmacol.187,80–88.
Moon, Y., Uzarski, R., and Pestka, J. J. (2003). Relationship of trichothecene structure to COX-2 induction in the macrophage: Selective action of type B (8-keto) trichothecenes. J. Toxicol. Environ. Health A66,1967–1983.
Olnes, M. I., and Kurl, R. N. (1994). Isolation of nuclear extracts from fragile cells: A simplified procedure applied to thymocytes. Biotechniques17,828–829.
Ouyang, Y. L., Li, S., and Pestka, J. J. (1996). Effects of vomitoxin (deoxynivalenol) on transcription factor NF-kappa B/Rel binding activity in murine EL-4 thymoma and primary CD4+ T cells. Toxicol. Appl. Pharmacol.140,328–336.
Pestka, J. J. (2003). Deoxynivalenol-induced IgA production and IgA nephropathy-aberrant mucosal immune response with systemic repercussions. Toxicol. Lett.140–141,287–295.
Pestka, J. J., and Smolinski, A. (2005). Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Environ. Health B Crit. Rev.8,39–69.
Pestka, J. J., Yan, D., and King, L. E. (1994). Flow cytometric analysis of the effects of in vitro exposure to vomitoxin (deoxynivalenol) on apoptosis in murine T, B and IgA+ cells. Food Chem. Toxicol.32,1125–1136.
Pestka, J. J., Zhou, H. R., Moon, Y., and Chung, Y. J. (2004). Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol. Lett.153,61–73.
Playford, M. P., and Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene23,7928–7946.
Poapolathep, A., Kumagai, S., Suzuki, H., and Doi, K. (2004). Development of early apoptosis and changes in T-cell subsets in mouse thymocyte primary cultures treated with nivalenol. Exp. Mol. Pathol.77,149–152.
Raine, D. A., Jeffrey, I. W., and Clemens, M. J. (1998). Inhibition of the double-stranded RNA-dependent protein kinase PKR by mammalian ribosomes. FEBS Lett.436,343–348.
Rosser, E. M., Morton, S., Ashton, K. S., Cohen, P., and Hulme, A. N. (2004). Synthetic anisomycin analogues activating the JNK/SAPK1 and p38/SAPK2 pathways. Org. Biomol. Chem.2,142–149.
Schorey, J. S., and Cooper, A. M. (2003). Macrophage signalling upon mycobacterial infection: The MAP kinases lead the way. Cell. Microbiol.5,133–142.
Sellins, K. S., and Cohen, J. J. (1987). Gene induction by gamma irradiation leads to DNA fragmentation in lymphocytes. J. Immunol.139,3199–3206.
Shifrin, V. I., and Anderson, P. (1999). Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J. Biol. Chem.274,13985–13992.
Shivakrupa, R., Radha, V., Sudhakar, C., and Swarup, G. (2003). Physical and functional interaction between Hck tyrosine kinase and guanine nucleotide exchange factor C3G results in apoptosis, which is independent of C3G catalytic domain. J. Biol. Chem.278,52188–52194.
Sugita-Konishi, Y., and Pestka, J. J. (2001). Differential upregulation of TNF-alpha, IL-6, and IL-8 production by deoxynivalenol (vomitoxin) and other 8-ketotrichothecenes in a human macrophage model. J. Toxicol. Environ. Health A64,619–636.
Šuša, M., Missbach, M., and Green, J. 2000. Src inhibitors: Drugs for the treatment of osteoporosis, cancer or both? Trends Pharmacol. Sci.21,489–495.
Thomas, S. M., and Brugge, J. S. (1997). Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol.13,513–609.
Uptain, S. M., Kane, C. M., and Chamberlin, M. J. (1997). Basic mechanisms of transcript elongation and its regulation. Ann. Rev. Biochem.66,117–172.
Uzarski, R. L., Islam, Z., and Pestka, J. J. (2003). Potentiation of trichothecene-induced leukocyte cytotoxicity and apoptosis by TNF-alpha and Fas activation. Chem. Biol. Interact.146,105–119.
Uzarski, R. L., and Pestka, J. J. (2003). Comparative susceptibility of B cells with different lineages to cytotoxicity and apoptosis induction by translational inhibitors. J. Toxicol. Environ. Health A66,2105–2118.
Vattem, K. M., Staschke, K. A., and Wek, R. C. (2001). Mechanism of activation of the double-stranded-RNA-dependent protein kinase, PKR: Role of dimerization and cellular localization in the stimulation of PKR phosphorylation of eurkaryotic initiation factor-2 (elF2). Eur. J. Biochem.268,3674–3684.
Widmann, C., Gibson, S., Jarpe, M. B., and Johnson, G. L. 1999. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol. Rev.79,143–180.
Wong, S., Schwartz, R. C., and Pestka, J. J. (2001). Superinduction of TNF-alpha and IL-6 in macrophages by vomitoxin (deoxynivalenol) modulated by mRNA stabilization. Toxicology161,139–149.
Wong, S. S., Zhou, H. R., Marin-Martinez, M. L., Brooks, K., and Pestka, J. J. (1998). Modulation of IL-1beta, IL-6 and TNF-alpha secretion and mRNA expression by the trichothecene vomitoxin in the RAW 264.7 murine macrophage cell line. Food Chem. Toxicol.36,409–419.
Wong, S. S., Zhou, H. R., and Pestka, J. J. (2002). Effects of vomitoxin (deoxynivalenol) on the binding of transcription factors AP-1, NF-κB, and NF-IL6 in RAW 264.7 macrophage cells. J. Toxicol. Environ. Health A65,1161–1180.
Wu, S., Kumar, K. U., and Kaufman, R. J. (1998). Identification and requirement of three ribosome binding domains in dsRNA-dependent protein kinase (PKR). Biochemistry37,13816–13826.
Yang, G. H., Jarvis, B. B., Chung, Y. J., and Pestka, J. J. (2000). Apoptosis induction by the satratoxins and other trichothecene mycotoxins: Relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol. Appl. Pharmacol.164,149–160.
Yang, G. H., and Pestka, J. J. (2002). Vomitoxin (deoxynivalenol)-mediated inhibition of nuclear protein binding to NRE-A, an IL-2 promoter negative regulatory element, in EL-4 cells. Toxicology172,169–179.
Yeung, M. C., Liu, J., and Lau, A. S. (1996). An essential role for the interferon-inducible, double-stranded RNA-activated protein kinase PKR in the tumor necrosis factor-induced apoptosis in U937 cells. Proc. Natl. Acad. Sci. U.S.A.93,12451–12455.
Zhou, H. R., Islam, Z., and Pestka, J. J. (2003a). Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol. Sci.72,130–142.
Zhou, H. R., Lau, A. S., and Pestka, J. J. (2003b). Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicol. Sci.74,335–344.
Zhou, H. R., Yan, D., and Pestka, J. J. (1997). Differential cytokine mRNA expression in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): Dose response and time course. Toxicol. Appl. Pharmacol.144,294–305.