Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự thay đổi của các enzyme chống oxy hóa và khả năng quang hợp của Eichhornia crassipes do Rhodamine B gây ra
Tóm tắt
Các phẩm màu tổng hợp được tiêu thụ rộng rãi trong nhiều ứng dụng công nghiệp, dẫn đến việc sản xuất một lượng lớn chất thải độc hại. Mục đích của nghiên cứu này là xem xét cách mà các nồng độ khác nhau của Rhodamine B (RhB) ảnh hưởng đến các chức năng sinh hóa và sinh lý của Eichhornia crassipes. Do đó, chúng tôi đã nghiên cứu hoạt động của các enzyme chống oxy hóa (Như SOD, CAT, và GPOD), sắc tố diệp lục, và độ huỳnh quang của Chl a (thí nghiệm OJIP) trong khoảng thời gian từ 24 đến 120 giờ tiếp xúc với Rhodamine B tại các nồng độ phẩm màu khác nhau (50, 100, 150, 200 và 500 mg/L). Hoạt động của enzyme chống oxy hóa cho thấy sự gia tăng khi áp dụng Rhodamine B 50 mg/L trong 120 giờ, nhưng ở các nồng độ phẩm màu cao hơn (100, 150, 200, và 500 mg/L), nó tăng lên ban đầu tới 48 giờ, sau đó liên tục giảm xuống 120 giờ, trong khi hàm lượng diệp lục giảm khi nồng độ RhB tăng trong môi trường nuôi cấy. Động lực của độ huỳnh quang diệp lục a OJIP bị ảnh hưởng bởi việc điều trị bằng Rhodamine B. Đỉnh độ huỳnh quang (Fm) giảm dần và phẳng ra khi nồng độ phẩm màu và thời gian tiếp xúc tăng lên. Việc điều trị bằng Rhodamine B làm tăng hiệu suất hấp thụ (ABS/RC), năng lượng bị mắc kẹt (TR/RC), và dòng năng lượng tiêu tán trên mỗi PSII RC (DI/RC) trong tất cả các cây thử nghiệm, trong khi làm giảm mạnh độ huỳnh quang tối đa (Fm), tỷ lệ các hằng số tốc độ cho việc sử dụng quang hóa và không quang hóa của RC (Fv/Fo), hiệu quả trung tâm phản ứng (RC/CSm), hiệu suất hấp thụ (ABS/CSm), tiềm năng vận chuyển electron (ET/CSm), và tiềm năng năng lượng bị mắc kẹt (TR/CSm) trên mỗi mặt cắt khi nồng độ RhB (50, 100, 150, 200 và 500 mg/L) và thời gian tiếp xúc (24, 48, 72, 96 và 120 giờ) được tăng lên. Với các nồng độ và thời gian điều trị khác nhau của Rhodamine B, độ huỳnh quang tối thiểu (Fo), hiệu suất vận chuyển electron trên mỗi trung tâm phản ứng (ET/RC), và dòng tiêu tán trên mỗi mặt cắt (DI/CSm) tiếp tục tăng lên ở nồng độ thấp và nồng độ cao sau đó tăng lên trong thời gian ngắn, rồi giảm xuống khi thời gian tiếp xúc với Rhodamine B tăng. Nó cũng làm giảm năng suất lượng tử tối đa của quang hóa học cơ bản (ɸPo), năng suất lượng tử của quá trình vận chuyển electron (ɸEo), và tỷ lệ của exciton bị mắc kẹt (Ψo) trong khi năng suất lượng tử của quá trình tiêu tán năng lượng trong đèn ăng-ten PSII (ɸDo) bị giảm sau khi thời gian tiếp xúc và nồng độ Rhodamine B tăng lên. Tổng thể, nó làm giảm chỉ số hiệu suất dựa trên khả năng hấp thụ (PIABS) và mặt cắt (PICSm) với nồng độ và thời gian Rhodamine B tăng lên. Các mặt nhận và tặng của PS II RC đã bị phá hủy, và quá trình truyền năng lượng từ ăng-ten đến trung tâm phản ứng cũng bị cản trở, ở nồng độ cao của Rhodamine B theo các nghiên cứu về phát xạ huỳnh quang diệp lục a. Nhìn chung, Rhodamine B đã làm thay đổi rõ rệt hiệu suất quang hợp và hệ thống chống oxy hóa trong E. crassipes.
Từ khóa
#Rhodamine B; Eichhornia crassipes; enzyme chống oxy hóa; quang hợp; diệp lụcTài liệu tham khảo
Aebi, H. (1984). Catalase in Vitro. Methods in Enzymology, 105, 121–126.
Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. Process Biochemistry, 40(3–4), 997–1026. https://doi.org/10.1016/J.PROCBIO.2004.04.008
Allakhverdiev, S. I., Klimov, V. V., & Carpentier, R. (1997). Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: Influence of a new phenolic compound. Biochemistry, 36(14), 4149–4154. https://doi.org/10.1021/bi962170n
Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331–1341.
Appenroth, K. J., Stöckel, J., Srivastava, A., & Strasser, R. J. (2001). Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution, 115(1), 49–64. https://doi.org/10.1016/S0269-7491(01)00091-4
Bączek-Kwinta, R., Kozieł, A., & Seidler-Łożykowska, K. (2011). Are the fluorescence parameters of German chamomile leaves the first indicators of the anthodia yield in drought conditions? Photosynthetica. https://doi.org/10.1007/s11099-011-0013-3
Bhattacharyya, K. G., & Sarma, N. (1997). Colour removal from pulp and paper mill effluent using waste products. IPPTA: Quarterly Journal of Indian Pulp and Paper Technical Association, 21(1), 143–148
Brestic, M., Zivcak, M., Kunderlikova, K., Sytar, O., Shao, H., Kalaji, H. M., & Allakhverdiev, S. I. (2015). Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynthesis Research, 125(1), 151–166.
Cai, H., Liang, J., Ning, X., Lai, X., & Li, Y. (2020). Algal toxicity induced by effluents from textile-dyeing wastewater treatment plants. Journal of Environmental Sciences (China), 91(January), 199–208. https://doi.org/10.1016/j.jes.2020.01.004
Chen, J., Shafi, M., Li, S., Wang, Y., Wu, J., Ye, Z., et al. (2015). Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Scientific Reports, 5(1), 1–9.
Chen, K. C., Wu, J. Y., Liou, D. J., & Hwang, S. C. J. (2003). Decolorization of the textile dyes by newly isolated bacterial strains. Journal of Biotechnology, 101(1), 57–68. https://doi.org/10.1016/S0168-1656(02)00303-6
Cheung, W. H., Szeto, Y. S., & McKay, G. (2009). Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Bioresource Technology, 100(3), 1143–1148. https://doi.org/10.1016/j.biortech.2008.07.071
City, N. (2010). Comparative study of oxidation of some azo dyes by different advanced oxidation processes: Fenton, Fenton-like, photo-Fenton and photo-Fenton-like. Journal of American Science, 6(10), 128–142.
Cleuvers, M., & Ratte, H.-T. (2002). Phytotoxicity of coloured substances: Is Lemna Duckweed an alternative to the algal growth inhibition test? Chemosphere, 49(1), 9–15.
Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001
Dashora, A., Rathore, K., Raj, S., & Sharma, K. (2022). Synthesis of silver nanoparticles employing Polyalthia longifolia leaf extract and their in vitro antifungal activity against phytopathogen. Biochemistry and Biophysics Reports, 31, 101320.
Dewez, D., Didur, O., Vincent-Héroux, J., & Popovic, R. (2008). Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus. Environmental Pollution, 151(1), 93–100. https://doi.org/10.1016/j.envpol.2007.03.002
Ekanayake, M. S., Udayanga, D., Wijesekara, I., & Manage, P. (2021). Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. Environmental Science and Pollution Research, 28(16), 20476–20486. https://doi.org/10.1007/s11356-020-11699-8
Eullaffroy, P., Frankart, C., Aziz, A., Couderchet, M., & Blaise, C. (2009). Energy fluxes and driving forces for photosynthesis in Lemna minor exposed to herbicides. Aquatic Botany, 90(2), 172–178. https://doi.org/10.1016/j.aquabot.2008.09.002
Ewais, E. A. (1997). Effects of cadmium, nickel and lead on growth, chlorophyll content and proteins of weeds. Biologia Plantarum, 39(3), 403–410.
Fry, T. L., Atwood, T., & Dunbar, M. R. (2010). Evaluation of rhodamine B as a biomarker for raccoons. Human-Wildlife Interactions, 4(2), 275–282.
Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309–314.
Gita, S., Hussan, A., & Choudhury, T. G. (2017). Impact of textile dyes waste on aquatic environments and its treatment. Environment & Ecology, 35(3), 2349–2353.
Guo, Y. Y., Yu, H. Y., Kong, D. S., Yan, F., & Zhang, Y. J. (2016). Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica, 54(4), 524–531. https://doi.org/10.1007/s11099-016-0206-x
Hagemeyer, J. (2004). Ecophysiology of plant growth under heavy metal stress. In M. N. V. Prasad (Ed.), Heavy metal stress in plants (pp. 201–222). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07743-6_8
Hernández-Zamora, M., Perales-Vela, H. V., Flores-Ortíz, C. M., & Cañizares-Villanueva, R. O. (2014). Physiological and biochemical responses of Chlorella vulgaris to Congo red. Ecotoxicology and Environmental Safety, 108, 72–77. https://doi.org/10.1016/j.ecoenv.2014.05.030
Hu, T. L., & Wu, S. C. (2001). Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium - Anabaena sp. Bioresource Technology, 77(1), 93–95. https://doi.org/10.1016/S0960-8524(00)00124-3
Huang, C.-J., Wei, G., Jie, Y.-C., Xu, J.-J., Zhao, S.-Y., Wang, L.-C., & dan Anjum, S. A. (2015). Responses of gas exchange, chlorophyll synthesis and ROS-scavenging systems to salinity stress in two ramie (Boehmeria nivea L.) cultivars. Photosynthetica, 53(3), 455–463.
Janka, E., Körner, O., Rosenqvist, E., & Ottosen, C. O. (2013). High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora). Plant Physiology and Biochemistry, 67(March), 87–94. https://doi.org/10.1016/j.plaphy.2013.02.025
Jena, S., Acharya, S., & Mohapatra, P. K. (2012). Variation in effects of four OP insecticides on photosynthetic pigment fluorescence of Chlorella vulgaris Beij. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2012.02.016
Jin, M. F., You, M. X., Lan, Q. Q., Cai, L. Y., & Lin, M. Z. (2021). Effect of copper on the photosynthesis and growth of Eichhornia crassipes. Plant Biology, 23(5), 777–784. https://doi.org/10.1111/plb.13281
Kalaji, H. M., Carpentier, R., Allakhverdiev, S. I., & Bosa, K. (2012). Fluorescence parameters as early indicators of light stress in barley. Journal of Photochemistry and Photobiology B: Biology. https://doi.org/10.1016/j.jphotobiol.2012.03.009
Khataee, A. R., Movafeghi, A., Torbati, S., Lisar, S. Y. S., & Zarei, M. (2012). Phytoremediation potential of duckweed (Lemna minor L.) in degradation of CI Acid Blue 92: Artificial neural network modeling. Ecotoxicology and Environmental Safety, 80, 291–298.
Kiliç, N. K., Nielsen, J. L., Yüce, M., & Dönmez, G. (2007). Characterization of a simple bacterial consortium for effective treatment of wastewaters with reactive dyes and Cr(VI). Chemosphere, 67(4), 826–831. https://doi.org/10.1016/j.chemosphere.2006.08.041
Kumar, D., Singh, H., Bhatt, U., Soni, V., & Allakhverdiev, S. (2021). Effect of continuous light on antioxidant activity, lipid peroxidation, proline and chlorophyll content in Vigna radiata L. Functional Plant Biology, 49(2), 145–154.
Kumar Mohapatra, P., & Schiewer, U. (2000). Dimethoate and quinalphos toxicity: pattern of photosynthetic pigment degradation and recovery in Synechocystis sp. PCC 6803. Algological Studies/Archiv für Hydrobiologie, 99, 79–94.
Lagriffoul, A., Mocquot, B., Mench, M., & Vangronsveld, J. (1998). Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant and soil, 200(2), 241–250.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
Liu, D., Li, T. Q., Jin, X. F., Yang, X. E., Islam, E., & Mahmood, Q. (2008). Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. Journal of Integrative Plant Biology, 50(2), 129–140. https://doi.org/10.1111/j.1744-7909.2007.00608.x
Lu, C., & Vonshak, A. (2002). Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum. https://doi.org/10.1034/j.1399-3054.2002.1140310.x
Malik, A. (2007). Environmental challenge vis a vis opportunity: The case of water hyacinth. Environment International, 33(1), 122–138. https://doi.org/10.1016/j.envint.2006.08.004
Manios, T., Stentiford, E. I., & Millner, P. A. (2003). The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecological Engineering, 20(1), 65–74.
Martinazzo, E. G., Ramm, A., & Bacarin, M. A. (2012). The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. Brazilian Journal of Plant Physiology, 24(4), 237–246. https://doi.org/10.1590/S1677-04202013005000001
Meneguelli-Souza, A. C., Vitória, A. P., Vieira, T. O., Degli-Esposti, M. S. O., & Souza, C. M. M. (2016). Ecophysiological responses of Eichhornia crassipes (Mart.) Solms to As5+ under different stress conditions. Photosynthetica, 54(2), 243–250. https://doi.org/10.1007/s11099-015-0174-6
Mohammed, G. H., Zarco-Tejada, P., & Miller, J. R. (2003). Applications of chlorophyll fluorescence in forestry and ecophysiology. In J. R. DeEll & P. M. A. Toivonen (Eds.), Practical applications of chlorophyll fluorescence in plant biology (pp. 79–124). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-0415-3_3
Mohapatra, P. K., & Schiewer, U. (1998). Effect of Dimethoate and Chlorfenvinphos on Plasma Membrane Integrity ofSynechocystis sp. PCC 6803. Ecotoxicology and environmental safety, 41(3), 269–274.
Moosvi, S., Keharia, H., & Madamwar, D. (2005). Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World Journal of Microbiology and Biotechnology, 21(5), 667–672. https://doi.org/10.1007/s11274-004-3612-3
Mugdha, A., & Usha, M. (2012). Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Scientific Reviews & Chemical Communications, 2(1), 31–40.
Muller, P., Li, X.-P., & Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125(4), 1558–1566.
Muller, R., Schreiber, U., Escher, B. I., Quayle, P., Bengtson Nash, S. M., & Mueller, J. F. (2008). Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Science of the Total Environment, 401(1–3), 51–59. https://doi.org/10.1016/j.scitotenv.2008.02.062
Mullineaux, P. M., & Baker, N. R. (2010). Oxidative stress: Antagonistic signaling for acclimation or cell death? Plant Physiology, 154(2), 521–525.
Naik, D. J., Desai, H. H., Desai, T. N., et al. (2013). Characterization and treatment of untreated wastewater generated from dyes and dye intermediates manufacturing industries of Sachin Industrial Area, Gujarat, India. Journal of Environmental Research and Development, 7(4A), 1602–1605.
Neubauer, C., & Schreiber, U. (1987). The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 42(11–12), 1246–1254. https://doi.org/10.1515/znc-1987-11-1217
Ni, L., Rong, S., Guoxiu, G., Lingling, H., Wang, P., Li, D., Yue, F., Wang, N., Hanqi, W., & Li, S. (2018). Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases. Chemosphere, 212, 654–661. https://doi.org/10.1016/j.chemosphere.2018.08.045
Pan, X., Deng, C., Zhang, D., Wang, J., Mu, G., & Chen, Y. (2008). Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests. Aquatic Toxicology, 89(4), 207–213. https://doi.org/10.1016/j.aquatox.2008.06.018
Pan, X., Zhang, D., Chen, X., Mu, G., Li, L., & Bao, A. (2009). Effects of levofloxacin hydrochlordie on photosystem II activity and heterogeneity of Synechocystis sp. Chemosphere, 77(3), 413–418.
Perales-Vela, H. V., González-Moreno, S., Montes-Horcasitas, C., & Cañizares-Villanueva, R. O. (2007a). Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere, 67(11), 2274–2281.
Raj, S., Mali, S. C., & Trivedi, R. (2018). Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemical and Biophysical Research Communications, 503(4), 2814–2819.
Raj, S., Singh, H., Trivedi, R., & Soni, V. (2020). Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Scientific Reports, 10(1), 1–10.
Raj, S., Trivedi, R., & Soni, V. (2021). Biogenic synthesis of silver nanoparticles, characterization and their applications—A review. Surfaces, 5(1), 67–90.
Ramadass, K., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2017). Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3. Ecotoxicology and Environmental Safety, 142, 538–543.
Richardson, S. D., Willson, C. S., & Rusch, K. A. (2004). Use of rhodamine water tracer in the marshland upwelling system. Groundwater, 42(5), 678–688.
Rochat, J., Demenge, P., & Rerat, J. C. (1978). Toxicologic study of a fluorescent tracer: Rhodamine B. Toxicological European research. Recherche europeenne en toxicologie, 1(1), 23–26.
Sharma, S., Sharma, J., Soni, V., Kalaji, H. M., & Elsheery, N. I. (2021b). Waterlogging tolerance: A review on regulative morpho-physiological homeostasis of crop plants. Journal of Water and Land Development, 49(IV–VI), 16–28. https://doi.org/10.24425/jwld.2021.137092
Sharma, J., Sharma, S., & Soni, V. (2021a). Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Regional Studies in Marine Science, 45, 101802. https://doi.org/10.1016/J.RSMA.2021.101802
Shimada, T., Yamazaki, H., Mimura, M., Inui, Y., & Guengerich, F. P. (1994). Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. Journal of Pharmacology and Experimental Therapeutics, 270(1), 414–423.
Singh, H., Kumar, D., & Soni, V. (2020). Copper and mercury induced oxidative stresses and antioxidant responses of Spirodela polyrhiza (L.) Schleid. Biochemistry and Biophysics Reports, 23(July), 100781. https://doi.org/10.1016/j.bbrep.2020.100781
Singh, H., Raj, S., Kumar, D., Sharma, S., Bhatt, U., Kalaji, H. M., et al. (2021). Tolerance and decolorization potential of duckweed (Lemna gibba) to CI Basic Green 4. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-90369-2
Soni, V., Keswani, K., Bhatt, U., Kumar, D., & Singh, H. (2021). In vitro propagation and analysis of mixotrophic potential to improve survival rate of Dolichandra unguis-cati under ex vitro conditions. Heliyon, 7(2), e06101.
Strasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanism, Regulation & Adaptation (pp. 445–483). Taylor & Francis.
Strasser, R. J., Tsimilli-Michael, M., & Srivastava, A. (2004). Analysis of the chlorophyll a fluorescence transient. In G. C. Papageorgiou (Ed.), Chlorophyll a fluorescence: A signature of photosynthesis (pp. 321–362). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-3218-9_12
Tabinda, A. B., Arif, R. A., Yasar, A., Baqir, M., Rasheed, R., Mahmood, A., & Iqbal, A. (2019). Treatment of textile effluents with Pistia stratiotes, Eichhornia crassipes and Oedogonium sp. International Journal of Phytoremediation, 21(10), 939–943. https://doi.org/10.1080/15226514.2019.1577354
Tan, K. A., Morad, N., & Ooi, J. Q. (2016). Phytoremediation of methylene blue and methyl orange using Eichhornia crassipes. International Journal of Environmental Science and Development, 7(10), 724–728.
Török, A., Buta, E., Indolean, C., Tonk, S., Silaghi-Dumitrescu, L., & Majdik, C. (2015). Biological removal of triphenylmethane dyes from aqueous solution by Lemna minor. Acta Chimica Slovenica, 62(2), 452–461.
Van Heerden, P. D. R., Krüger, G. H. J., & Louw, M. K. (2007). Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust. Environmental Pollution, 146(1), 34–45.
Verma, S., & Mishra, S. N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology, 162(6), 669–677.
Vitória, A. P., Frederico, L. P., da Silva, L. B. C., da Cunha, M., de Oliveira, J. G., Rezende, C. E., et al. (2011). Structural and ecophysiological alterations of the water hyacinth [Eichhornia crassipes (Mart.) Solms] due to anthropogenic stress in Brazilian rivers. Brazilian Archives of Biology and Technology, 54(5), 1059–1068. https://doi.org/10.1590/S1516-89132011000500025
Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., et al. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal, 16(16), 4806–4816.
Wong, Y., & Yu, J. (1999). Laccase-catalyzed decolorization of synthetic dyes. Water Research, 33(16), 3512–3520. https://doi.org/10.1016/S0043-1354(99)00066-4
Xia, J., & Tian, Q. (2009). Early stage toxicity of excess copper to photosystem II of Chlorella pyrenoidosa-OJIP chlorophyll a fluorescence analysis. Journal of Environmental Sciences, 21(11), 1569–1574. https://doi.org/10.1016/S1001-0742(08)62457-2
Xu, X., Xu, H., Wang, Y., Wang, X., Qiu, Y., & Xu, B. (2008). The effect of salt stress on the chlorophyll level of the main sand-binding plants in the shelterbelt along the Tarim Desert Highway. Chinese Science Bulletin, 53(2), 109–111.
Yan, Y., Xu, X., Shi, C., Yan, W., Zhang, L., & Wang, G. (2019). Ecotoxicological effects and accumulation of ciprofloxacin in Eichhornia crassipes under hydroponic conditions. Environmental Science and Pollution Research, 26(29), 30348–30355. https://doi.org/10.1007/s11356-019-06232-5
Yang, Z.-K., Ma, Y.-H., Zheng, J.-W., Yang, W.-D., Liu, J.-S., & Li, H.-Y. (2014). Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. Journal of Applied Phycology, 26(1), 73–82.
Zhang, D., Pan, X., Mu, G., & Wang, J. (2010). Toxic effects of antimony on photosystem II of Synechocystis sp. as probed by in vivo chlorophyll fluorescence. Journal of Applied Phycology, 22(4), 479–488. https://doi.org/10.1007/s10811-009-9482-1
Zhang, D., Pan, X., Mu, G., & Wang, J. (2010). Toxic effects of antimony on photosystem II of Synechocystis sp. as probed by in vivo chlorophyll fluorescence. Journal of Applied Phycology, 22(4), 479–488.
Zhang, F.-Q., Wang, Y.-S., Lou, Z.-P., & Dong, J.-D. (2007). Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 67(1), 44–50.
Zhou, W., Juneau, P., & Qiu, B. (2006). Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium. Chemosphere, 65(10), 1738–1746.