Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance

Sedimentology - Tập 27 Số 6 - Trang 613-629 - 1980
Colin F. Klappa1,2
1Gulf Canada Resources Inc., P.O. Box 130, Calgary, Alberta, Canada T2P 2H7.
2Jane Herdman Laboratories of Geology, University of Liverpool, Liverpool, U.K.

Tóm tắt

ABSTRACT

Rhizoliths are defined as organosedimentary structures resulting in the preservation of roots of higher plants, or remains thereof, in mineral matter. They are abundant and characteristic features of Quaternary terrestrial carbonates (calcretes and aeolianites) from coastal regions of the western Mediterranean. Field and petrographic observations indicate that five basic types of rhizoliths can be recognized: (1) root moulds, which are tubular voids that outline positions of former, now decayed roots; (2) root casts, which are sediment‐ and/or cement‐filled root moulds; (3) root tubules, which are cemented cylinders around root moulds; (4) rhizocretions s.s., which are pedodiagenetic mineral accumulations (here low magnesian calcite) around living or dead plant roots; and (5) root petrifactions, which are mineral impregnations or mineral replacements of organic matter whereby anatomical features of roots have been preserved partially or totally. Apart from rhizoliths themselves, roots of higher plants are responsible for the formation of numerous and characteristic features of pedogenetically affected terrestrial carbonates. Plant roots are responsible for, or contribute to, the formation of alveolar textures, in situ brecciation (rhizobrecciation) textures, horizontal sheet cracks, vertically elongate glaebules (concretionary soil structures) and micritization (rhizomicritization) within terrestrial carbonates. Rhizoliths, together with the above features, are products of pedodiagenesis. More significantly, rhizoliths and related features are indicators of palaeosols and hence of subaerial vadose environments in ancient (post‐Silurian) successions.

Từ khóa


Tài liệu tham khảo

Alexander M., 1961, Introduction to Soil Microbiology, 472

American Geological Institute, 1972, Glossary of Geology, 805

Amiel A.J., 1975, Progressive pedogenesis of eolianite sandstone, J. sedim. Petrol., 45, 513

Bal L., 1975, Carbonate in soil: a theoretical consideration on, and proposal for its fabric analysis. II. Crystal tubes, intercalary crystals, K fabric, Neth. J. Agric. Sci., 23, 163

10.1007/978-3-642-65923-2_5

10.1098/rstb.1975.0101

Brewer R., 1964, Fabric and Mineral Analysis of Soils, 470

10.1007/978-3-642-65923-2_16

Burges A., 1958, Micro‐Organisms in the Soil, 188

Calvet F., 1975, Las Rizocreciones del Pleistoceno de Mallorca, Inst. Invest. Geol. Univ. Barcelona, 30, 35

Carozzi A.V., 1967, Recent calcite‐cemented sandstone generated by the Equatorial tree Iroko (Chlorophora excelsa), Daloa, Ivory Coast, J. sedim. Petrol., 37, 597

Durand J.H., 1949, Essai de nomenclature des croûtes, Bull. Soc. Sci. Nautrelles Tunisie, 3

Esteban M., 1974, Caliche textures and Microcodium, Boll. Soc. geol. Ital., 92, 105

Esteban M., 1976, Vadose pisolite and caliche, Bull. Am. Ass. Petrol. Geol., 60, 2048

Fairbridge R.W., 1953, Soil horizons and marine bands in the coastal limestones of Western Australia, J. Proc. R. Soc. New South Wales, 86, 68, 10.5962/p.360632

10.1016/0031-0182(68)90088-6

Gray T.R.G., 1971, Soil Micro‐organisms, 240

Harrison R.S., 1977, Caliche profiles: indicators of near‐surface subaerial diagenesis, Barbados, West Indies, Bull. Can. Petrol. Geol., 25, 123

10.1130/0016-7606(1965)76[845:FMROKB]2.0.CO;2

James N.P., 1972, Holocene and Pleistocene calcareous crust (caliche) profiles: criteria for subaerial exposure, J. sedim. Petrol., 42, 817

Johnson D.L., 1967, Caliche on the Channel Islands, Miner. Inf. Calif. Div. Mines Geol., 20, 151

10.2475/ajs.250.8.594

10.1130/GSAB-34-609

10.1086/623245

10.1111/j.1365-3091.1978.tb02077.x

Klappa C.F.(1978b)Morphology composition and genesis of Quaternary calcretes from the western Mediterranean: a petrographic approachUnpublished Ph.D. Thesis University of Liverpool 446pp.

Klappa C.F., 1978, Biogenetic carbonate structures in Quaternary calcretes, western Mediterranean, 365

10.2110/jsr.49.955

Klappa C.F., 1979, Calcification and significance of soil filamentous micro‐organisms in Quaternary calcretes, eastern Spain, Bull. Am. Ass. Petrol. Geol., 63, 480

10.1002/gj.3350150202

Northrop J.I., 1890, Notes on the geology of the Bahamas, Trans. N.Y. Acad. Sci., 10, 4

10.1130/MEM147-p131

10.2113/gssgfbull.S7-XIII.1-2.195

Read J.F., 1974, Calcrete deposits and Quaternary sediments, Edel Province, Western Australia, Mem. Am. Ass. Petrol. Geol., 22, 250

Russell E.W., 1973, Soil Conditions and Plant Growth 10th ed., 849

10.2113/gsecongeo.22.7.729

10.1007/978-3-642-65923-2_10

Sherman G.D., 1958, Calcareous concretions and sheets in soils near South Point, Hawaii, Pacific Sci., 12, 255

Steinen R.P., 1974, Phreatic and vadose diagenetic modification of Pleistocene limestone: Petrographic observations from sub‐surface of Barbados, West Indies, Bull. Am. Ass. Petrol. Geol., 58, 1008

Strakhov N.H., 1970, Principles of Lithogenesis, 577

Teichert C., 1950, Late Quaternary sea‐level changes at Rottnest Island, Western Australia, Proc. R. Soc. Victoria, 59, 63

Valeton I., 1971, Tubular fossils in the bauxites and the underlying sediments of Surinam and Guyana, Geologie Mijnb., 50, 733

Ward W.C., 1975, Studies in Geology, 500