Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen

International Journal of Systematic and Evolutionary Microbiology - Tập 63 Số Pt_11 - Trang 4167-4173 - 2013
Rebeca Fuzinatto Dall’Agnol1,2, Renan Augusto Ribeiro1,3, Ernesto Ormeño‐Orrillo4, Marco A. Rogel4, Jakeline Renata Marçon Delamuta1,3, Diva Souza Andrade5, Esperanza Martínez‐Romero4, Mariangela Hungría1,2,3
1Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil
2Universidade Estadual de Londrina, Dept of Biochemistry and Biotechnology, C.P. 6001, 86051-990 Londrina, Paraná, Brazil
3Universidade Estadual de Londrina, Dept of Microbiology, C.P. 60001, 86051-990 Londrina, Paraná, Brazil
4Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
5IAPAR, C.P. 481, 86001-970 Londrina, Paraná, Brazil

Tóm tắt

Common bean (Phaseolus vulgaris L.) can establish symbiotic associations with several Rhizobium species; however, the effectiveness of most strains at fixing nitrogen under field conditions is very low. PRF 81T is a very effective strain, usually referred to as Rhizobium tropici and used successfully in thousands of doses of commercial inoculants for the common bean crop in Brazil; it has shown high rates of nitrogen fixation in all areas representative of the crop in the country. Here, we present results that indicate that PRF 81T, although it belongs to the ‘ R. tropici group’, which includes 10 Rhizobium species, R. tropici , R. leucaenae , R. lusitanum , R. multihospitium , R. miluonense , R. hainanense , R. calliandrae , R. mayense , R. jaguaris and R. rhizogenes , represents a novel species. Several morpho-physiological traits differentiated PRF 81T from related species. Differences were also confirmed in the analysis of rep-PCR (sharing less than 45 % similarity with the other species), MLSA with recA, atpD and rpoB genes, and DNA–DNA hybridization. The novel species, for which we propose the name Rhizobium freirei sp. nov., is able to establish effective root nodule symbioses with Phaseolus vulgaris, Leucaena leucocephala, Leucaena esculenta, Crotalaria juncea and Macroptilium atropurpureum. The type strain is PRF 81T ( = CNPSo 122T = SEMIA 4080T = IPR-Pv81T = WDCM 440T).

Từ khóa


Tài liệu tham khảo

Chen, 1997, Rhizobium hainanense sp. nov., isolated from tropical legumes, Int J Syst Bacteriol, 47, 870, 10.1099/00207713-47-3-870

Coenye, 2001, Taxonomy and identification of the Burkholderia cepacia complex, J Clin Microbiol, 39, 3427, 10.1128/JCM.39.10.3427-3436.2001

Edgar, 2004, muscle: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, 32, 1792, 10.1093/nar/gkh340

Felsenstein, 1981, Evolutionary trees from DNA sequences: a maximum likelihood approach, J Mol Evol, 17, 368, 10.1007/BF01734359

Gomes, 2012, Two-dimensional proteome reference map of Rhizobium tropici PRF 81 reveals several symbiotic determinants and strong resemblance with agrobacteria, Proteomics, 12, 859, 10.1002/pmic.201100406

Graham, 1981, Some problems of nodulation and symbiotic nitrogen-fixation in Phaseolus vulgaris L. – a review, Field Crops Res, 4, 93, 10.1016/0378-4290(81)90060-5

Gu, 2008, Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules, Int J Syst Evol Microbiol, 58, 1364, 10.1099/ijs.0.65661-0

Han, 2008, Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China, Int J Syst Evol Microbiol, 58, 1693, 10.1099/ijs.0.65568-0

Hardarson, 1993, Methods for enhancing symbiotic nitrogen-fixation, Plant Soil, 152, 1, 10.1007/BF00016329

Hungria, 2000, Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil, Soil Biol Biochem, 32, 1515, 10.1016/S0038-0717(00)00063-8

Hungria, 2001, Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil, Soil Biol Biochem, 33, 1349, 10.1016/S0038-0717(01)00040-2

Hungria, 2003, Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains, Biol Fertil Soils, 39, 88, 10.1007/s00374-003-0682-6

Jordan, 1984, Family III. Rhizobiaceae Conn 1938, Bergey’s Manual of Systematic Bacteriology, vol. 1, 234

Konstantinidis, 2006, Toward a more robust assessment of intraspecies diversity, using fewer genetic markers, Appl Environ Microbiol, 72, 7286, 10.1128/AEM.01398-06

Martens, 2007, Multilocus sequence analysis of Ensifer and related taxa, Int J Syst Evol Microbiol, 57, 489, 10.1099/ijs.0.64344-0

Martínez-Romero, 2003, Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives, Plant Soil, 252, 11, 10.1023/A:1024199013926

Martínez-Romero, 1991, Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees, Int J Syst Bacteriol, 41, 417, 10.1099/00207713-41-3-417

Menna, 2009, Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes, Int J Syst Evol Microbiol, 59, 2934, 10.1099/ijs.0.009779-0

Michiels, 1998, Phaseolus vulgaris is a non-selective host for nodulation, FEMS Microbiol Ecol, 26, 193, 10.1111/j.1574-6941.1998.tb00505.x

Ormeño-Orrillo, 2012, Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.), BMC Genomics, 13, 735, 10.1186/1471-2164-13-735

Pinto, 2007, Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.), Soil Biol Biochem, 39, 1851, 10.1016/j.soilbio.2007.01.001

Ribeiro, 2009, Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity, Res Microbiol, 160, 297, 10.1016/j.resmic.2009.03.009

Ribeiro, 2012, Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov., Int J Syst Evol Microbiol, 62, 1179, 10.1099/ijs.0.032912-0

Rincón-Rosales, 2013, Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora, Int J Syst Evol Microbiol, 63, 3423, 10.1099/ijs.0.048249-0

Saitou, 1987, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, 4, 406

Stocco, 2008, Avaliação da biodiversidade de rizóbios simbiontes do feijoeiro (Phaseolus vulgaris L.) em Santa Catarina, Rev Bras Cienc Solo, 32, 1107, 10.1590/S0100-06832008000300019

Tamura, 1993, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol Biol Evol, 10, 512

Tamura, 2011, mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol Biol Evol, 28, 2731, 10.1093/molbev/msr121

Tighe, 2000, Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System, Int J Syst Evol Microbiol, 50, 787, 10.1099/00207713-50-2-787

Valverde, 2006, Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris, Int J Syst Evol Microbiol, 56, 2631, 10.1099/ijs.0.64402-0

Velázquez, 2010, Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes, Syst Appl Microbiol, 33, 247, 10.1016/j.syapm.2010.04.004

Wang, 2000, Phylogeny of root- and stem-nodule bacteria associated with legumes, Prokaryotic Nitrogen Fixation: A Model System for the Analysis of a Biological Process, 177