Đặc tính lưu biến của chất lỏng dày lên hỗ trợ trường từ và quá trình đánh bóng hiệu quả cao bề mặt cầu của gốm ZrO2

Yang Ming1, Xiang Ming Huang1, Dong Dong Zhou1, Qing Zeng1, Hong Yu Li
1College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China

Tóm tắt

Công nghệ đánh bóng dày lên do cắt sử dụng chất lỏng đánh bóng không Newton là một phương pháp đánh bóng chi phí thấp và ít gây hư hại cho gia công siêu chính xác các bề mặt cong phức tạp. Tuy nhiên, hiệu suất đánh bóng thấp và độ nhớt khó kiểm soát của các chất lỏng đánh bóng dày lên do cắt truyền thống đã hạn chế đáng kể ứng dụng thực tiễn của chúng. Trong nghiên cứu này, một loại chất lỏng đánh bóng dày lên do cắt hỗ trợ trường từ yếu (WMFA-STPF) mới gồm các hạt sắt carbonyl, đã được phát triển, sử dụng hiệu ứng quay từ yếu để thúc đẩy quá trình dày lên do cắt, và các đặc tính lưu biến của nó đã được nghiên cứu. Kết quả thu được cho thấy WMFA-STPF thể hiện độ trơn tru tốt ở tốc độ cắt thấp và đặc tính dày lên được cải thiện trong khoảng tốc độ cắt làm việc. Để xác minh khả năng đánh bóng hiệu quả cao, chất lượng cao và đồng nhất của công nghệ WMFA-STP áp dụng cho bề mặt cầu của sản phẩm gốm zirconia, các thí nghiệm đánh bóng so sánh đã được thực hiện. Sau 75 phút đánh bóng, hư hại bề mặt đã được giảm thiểu hiệu quả; chất lượng và tính đồng nhất của bề mặt đã được cải thiện đáng kể; và tốc độ loại bỏ vật liệu tăng 156% lên tới 7,82 μm/h. Do đó, phương pháp WMFA-STP có thể được sử dụng thành công cho việc đánh bóng hiệu quả cao, chất lượng cao của các loại gốm cứng và giòn.

Từ khóa

#đặc tính lưu biến #chất lỏng đánh bóng #trường từ yếu #đánh bóng hiệu quả cao #gốm ZrO2

Tài liệu tham khảo

Vila-Nova TEL, Gurgel de Carvalho IH, Moura DMD et al (2020) Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dent Mater 36(4):e126–e139. https://doi.org/10.1016/j.dental.2020.01.004 Ghosh G, Sidpara A, Bandyopadhyay PP (2019) An investigation into the wear mechanism of zirconia-alumina polishing pad under different environments in shape adaptive grinding of WC-Co coating. Wear 428–429:223–236. https://doi.org/10.1016/j.wear.2019.03.020 Manicone PF, Rossi Iommetti P, Raffaelli L (2007) An overview of zirconia ceramics: Basic properties and clinical applications. J Dent 35(11):819–826. https://doi.org/10.1016/j.jdent.2007.07.008 Roualdes O, Duclos M-E, Gutknecht D, Frappart L, Chevalier J, Hartmann DJ (2010) In vitro and in vivo evaluation of an alumina–zirconia composite for arthroplasty applications. Biomaterial 31(8):2043–2054. https://doi.org/10.1016/j.biomaterials.2009.11.107 Oetzel C, Clasen R (2006) Preparation of zirconia dental crowns via electrophoretic deposition. J Mater Sci 41(24):8130–8137. https://doi.org/10.1007/s10853-006-0621-7 Suzuki H, Okada M, Namba Y, Goto T (2019) Superfinishing of polycrystalline YAG ceramic by nanodiamond slurry. CIRP Ann 68(1):361–364. https://doi.org/10.1016/j.cirp.2019.04.062 Wan L, Li L, Deng Z, Deng Z, Liu W (2019) Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics. J Manuf Process 47:41–51. https://doi.org/10.1016/j.jmapro.2019.09.024 Zhang X, Kang Z, Li S, Shi Z, Wen D, Jiang J, Zhang Z (2019) Grinding force modelling for ductile-brittle transition in laser macro-micro-structured grinding of zirconia ceramics. Ceram Int 45(15):18487. https://doi.org/10.1016/j.ceramint.2019.06.067 Zucuni CP, Pereira GKR, Valandro LF (2020) Grinding, polishing and glazing of the occlusal surface do not affect the load-bearing capacity under fatigue and survival rates of bonded monolithic fully-stabilized zirconia simplified restorations. J Mech Behav Biomed Mater 103:103528. https://doi.org/10.1016/j.jmbbm.2019.103528 Zucuni CP, Dapieve KS, Rippe MP, Pereira GKR, Bottino MC, Valandro LF (2019) Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding. J Mech Behav Biomed Mater 93:222–229. https://doi.org/10.1016/j.jmbbm.2019.02.013 Fiocchi AA, de Angelo Sanchez LE, Lisboa-Filho PN, Fortulan CA (2016) The ultra-precision Ud-lap grinding of flat advanced ceramics. J Mater Process Tech 231:336–356. https://doi.org/10.1016/j.jmatprotec.2015.10.003 Kumar S, Jain VK, Sidpara A (2015) Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis Eng 42:165–178. https://doi.org/10.1016/j.precisioneng.2015.04.014 Wei H, Gao H, Wang X (2019) Development of novel guar gum hydrogel based media for abrasive flow machining: shear-thickening behavior and finishing performance. Int J Mech Sci 157–158:758–772. https://doi.org/10.1016/j.ijmecsci.2019.05.022 Gürgen S, Sert A (2019) Polishing operation of a steel bar in a shear thickening fluid medium. Compos Part B - Eng 175:107127. https://doi.org/10.1016/j.compositesb.2019.107127 Nguyen D (2020) Simulation and experimental study on polishing of spherical steel by non-Newtonian fluids. Int J Adv Manuf Tech 107(6):763–773. https://doi.org/10.1007/s00170-020-05055-w Shao Q, Lyu B, Yuan J, Wang X, Ke M, Zhao P (2021) Shear thickening polishing of the concave surface of high-temperature nickel-based alloy turbine blade. J Mater Res Technol 11:72–84. https://doi.org/10.1016/j.jmrt.2020.12.112 Li M, Lyu B, Yuan J, Dong C, Dai W (2015) Shear-thickening polishing method. Int J Mach Tool Manuf 94:88–99. https://doi.org/10.1016/j.ijmachtools.2015.04.010 Li M, Huang Z, Dong T, Mao M, Lyu B, Yuan J (2018) Surface integrity of bearing steel element with a new high-efficiency shear thickening polishing technique. Procedia CIRP 71:313–316. https://doi.org/10.1016/j.procir.2018.05.030 Li M, Karpuschewski B, Ohmori H et al (2021) Adaptive shearing-gradient thickening polishing (AS-GTP) and subsurface damage inhibition. International J Mach Tool Manuf 160:103651. https://doi.org/10.1016/j.ijmachtools.2020.103651 Li M, Liu M, Riemer O, Song F, Lyu B (2021) Anhydrous based shear-thickening polishing of KDP crystal. Chinese J Aeronaut 34(6):90–99. https://doi.org/10.1016/j.cja.2020.09.019 Li M, Xie J (2022) Green-chemical-jump-thickening polishing for silicon carbide. Ceram Int 48(1):1107–1124. https://doi.org/10.1016/j.ceramint.2021.09.196 Zhu WL, Beaucamp A (2020) Non-Newtonian fluid based contactless sub-aperture polishing. CIRP Ann 69(1):293–296. https://doi.org/10.1016/j.cirp.2020.04.093 Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H (2019) Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int J Adv Manuf Tech 102(5–8):2617–2632. https://doi.org/10.1007/s00170-019-03367-0 Yang M, Li C, Zhang Y et al (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tool Manuf 122:55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.00 Xu L, Lei H (2020) Nano-scale surface of ZrO2 ceramics achieved efficiently by peanut-shaped and heart-shaped SiO2 abrasives through chemical mechanical polishing. Ceram Int 6(9):13297–13306. https://doi.org/10.1016/j.ceramint.2020.02.108 Dong Y, Lei H, Liu W (2020) Effect of mixed-shaped silica sol abrasives on surface roughness and material removal rate of zirconia ceramic cover. Ceram Int 46(15):23828–23833. https://doi.org/10.1016/j.ceramint.2020.06.159 Heng L, Kim JS, Tu JF, Mun S (2020) Fabrication of precision meso-scale diameter ZrO2 ceramic bars using new magnetic pole designs in ultra-precision magnetic abrasive finishing. Ceram Int 46(11):17335–17346. https://doi.org/10.1016/j.ceramint.2020.04.022 Li M, Huang Z, Dong T, Tang C, Lyu B, Yuan J (2018) Surface quality of Zirconia (ZrO2) Parts in shear-thickening high-efficiency polishing. Procedia CIRP 77:143–146. https://doi.org/10.1016/j.procir.2018.08.256 Zhang J, Wang H, Kumar AS, Jin M (2020) Experimental and theoretical study of internal finishing by a novel magnetically driven polishing tool. Int J Mach Tool Manuf 153:103552. https://doi.org/10.1016/j.ijmachtools.2020.103552 Fan Z, Tian Y, Zhou Q, Shi C (2020) Enhanced magnetic abrasive finishing of Ti–6Al–4V using shear thickening fluids additives. Precis Eng 64:300–306. https://doi.org/10.1016/j.precisioneng.2020.05.001 Wei M, Sun L, Zhang C, Qi P, Zhu J (2018) Shear-thickening performance of suspensions of mixed ceria and silica nanoparticles. J Mater Sci 54:346–355. https://doi.org/10.1007/s10853-018-2873-4 Li M, Lyu B, Yuan J, Yao W, Zhou F, Zhong M (2016) Evolution and equivalent control law of surface roughness in shear-thickening polishing. Int J Mach Tool Manuf 108:113–126. https://doi.org/10.1016/j.ijmachtools.2016.06.007 Zhang X, Li W, Gong X (2010) Thixotropy of MR shear-thickening fluids. Smart Mater Struct 19(12):125012. https://doi.org/10.1088/0964-1726/19/12/125012 Singh AK, Jha S, Pandey PM (2012) Nanofinishing of fused silica glass using ball-end magnetorheological finishing tool. Mater Manuf Process 27(10):1139–1144. https://doi.org/10.1080/10426914.2011.654159 Peng GR, Li W, Tian TF, Ding J, Nakano M (2014) Experimental and modeling study of viscoelastic behaviors of magneto-rheological shear thickening fluids. Korea-Aust Rheol J 26(2):149–158. https://doi.org/10.1007/s13367-014-0015-3 Deng XJ, Klein B, Hallbom DJ, de Wit B, Zhang JX (2018) Influence of particle size on the basic and time-dependent rheological behaviors of cemented paste backfill. J Mater Eng Perform 27(7):3478–3487. https://doi.org/10.1007/s11665-018-3467-7 Wu XJ, Wang Y, Yang W, Xie BH, Yang MB, Dan W (2012) A rheological study on temperature dependent microstructural changes of fumed silica gels in dodecane. Soft Matter 8(40):10457. https://doi.org/10.1039/c2sm25668a Tian Y, Jiang J, Meng Y, Wen S (2010) A shear thickening phenomenon in magnetic field controlled-dipolar suspensions. Appl Phys Lett 97(15):151904. https://doi.org/10.1063/1.3501128 Zhang X, Li W, Gong XL (2008) Study on magnetorheological shear thickening fluid. Smart Mater Struct 17(1):015051. https://doi.org/10.1088/0964-1726/17/1/015051 Labanda J, Llorens J (2005) A structural model for thixotropy of colloidal dispersions. Rheol Acta 45(3):305–314. https://doi.org/10.1007/s00397-005-0035-5 Chen K, Wang Y, Xuan S, Gong X (2017) A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid. J Colloid Interf Sci 497:378–384. https://doi.org/10.1016/j.jcis.2017.03.038 Moctezuma RE, Donado F, Arauz-Lara JL (2013) Lateral aggregation induced by magnetic perturbations in a magnetorheological fluid based on non-Brownian particles. Phys Rev E 88(3):032305. https://doi.org/10.1103/physreve.88.032305 Boczkowska A, Awietjan SF, Wejrzanowski T, Kurzydłowski KJ (2009) Image analysis of the microstructure of magnetorheological elastomers. J Mater Sci 44(12):3135–3140. https://doi.org/10.1007/s10853-009-3417-8 Briscoe B, Luckham P, Zhu S (1999) Pressure influences upon shear thickening of poly(acrylamide) solutions. Rheol Acta 38(3):224–234. https://doi.org/10.1007/s003970050172 Jiang W, Ye F, He Q, Gong X, Feng J, Lu L, Xuan S (2014) Study of the particles’ structure dependent rheological behavior for polymer nanospheres based shear thickening fluid. J Colloid Interf Sci 413:8–16. https://doi.org/10.1016/j.jcis.2013.09.020 Saraswathamma K, Jha S, Venkateswara Rao P (2017) Rheological behaviour of magnetorheological polishing fluid for Si polishing. Mater Today Proc 4(2):1478–1491. https://doi.org/10.1016/j.matpr.2017.01.170 Gürgen S, Sofuoğlu MA, Kuşhan MC (2019) Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model. Smart Mater Struct 28(3):035027. https://doi.org/10.1088/1361-665x/ab018c Ball RC, Melrose JR (1999) Shear thickening in colloidal dispersions. AIP Conf Proc 62(10):27–32. https://doi.org/10.1063/1.58445 Zhao P, Fu Y, Li H, Zhang C, Liu Y (2019) Three-dimensional simulation study on the aggregation behavior and shear properties of magnetorheological fluid. Chem Phys Lett 722:74–79. https://doi.org/10.1016/j.cplett.2019.02.042 Fernandez N, Mani R, Rinaldi D et al (2013) Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys Rev Lett 111(10):108301. https://doi.org/10.1103/physrevlett.111.108301 Karthikeyan S, Mohan B, Kathiresan S (2021) Influence of rotational magnetorheological abrasive flow finishing process on biocompatibility of stainless steel 316L. J Materi Eng Perform 30(2):1545–1553. https://doi.org/10.1007/s11665-020-05442-0