Rheological investigation of asphalt binder modified with nanosilica

Faheem Sadiq Bhat1, Mohammad Shafi Mir1
1Dept. of Civil Engineering National Institute of Technology, Srinagar J&K, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Y. Yildirim, Polymer modified asphalt binders, Constr. Build. Mater. 21 (2007) 66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007.

J.C. Munera, E.A. Ossa, Polymer modified bitumen: Optimization and selection, Mater. Des. 62 (2014) 91–97. https://doi.org/10.1016/j.matdes.2014.05.009.

J. Zhu, B. Birgisson, N. Kringos, Polymer modification of bitumen: Advances and challenges, Eur. Polym. J. 54 (2014) 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005.

A. Behnood, M. Modiri Gharehveran, Morphology, rheology, and physical properties of polymer-modified asphalt binders, Eur. Polym. J. 112 (2019) 766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049.

C. Oliviero Rossi, A. Spadafora, B. Teltayev, G. Izmailova, Y. Amerbayev, V. Bortolotti, Polymer modified bitumen: Rheological properties and structural characterization, Colloids Surfaces, A Physicochem. Eng. Asp. 480 (2015) 390–397. https://doi.org/10.1016/j.colsurfa.2015.02.048.

D. Lo Presti, Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review, Constr. Build. Mater. 49 (2013) 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007.

R. Li, F. Xiao, S. Amirkhanian, Z. You, J. Huang, Developments of nano materials and technologies on asphalt materials — A review, Constr. Build. Mater. 143 (2017) 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158.

J. Yang, S. Tighe, A Review of Advances of Nanotechnology in Asphalt Mixtures, Procedia Soci. Behav. Sci. 96 (2013) 1269–1276. https://doi.org/10.1016/j.sbspro.2013.08.144.

C. Fang, R. Yu, S. Liu, Y. Li, Nanomaterials Applied in Asphalt Modification: A Review, J. Mater. Sci. Technol. 29 (2013) 589–594. https://doi.org/10.1016/j.jmst2013.04.008.

W.J.M. Steyn, Potential applications of nanotechnology in pavement engineering, J. Transp. Eng. 135 (10) (2009) 764–772. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:10(764).

F.C.G. Martinho, J.P.S. Farinha, An overview of the use of nanoclay modified bitumen in asphalt mixtures for enhanced flexible pavement performances, Road Mater. Pavement Des. 20 (3) (2019) 671–701. https://doi.org/10.1080/14680629.2017.1408482.

J. Teizer, M. Venugopal, W. Teizer, J. Felkl, Nanotechnology and Its Impact on Construction: Bridging the Gap between Researchers and Industry Professionals, J. Constr. Eng. Manag. 138 (5) (2012) 594–604. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000467.

J.-Y. Yu, P.-C. Feng, H.-L. Zhang, S.-P. Wu, Effect of organo-montmorillonite on aging properties of asphalt, Constr. Build. Mater. 23 (2009) 2636–2640. https://doi.org/10.1016/j.conbuildmat.2009.01.007.

P.K. Ashish, D. Singh, S. Bohm, Investigation on influence of nanoclay addition on rheological performance of asphalt binder, Road Mater. Pavement Des. 18 (5) (2017) 1007–1026. https://doi.org/10.1080/14680629.2016.1201522.

S. Zapién-Castillo, J.L. Rivera-Armenta, M.Y. Chávez-Cinco, B.A. Salazar-Cruz, A.M. Mendoza-Martínez, Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite, Constr. Build. Mater. 106 (2016) 349–356. https://doi.org/10.1016/j.conbuildmat.2015.12.099.

F.S. Bhat, M.S. Mir, Performance evaluation of nanosilica-modified asphalt binder, Innov. Infrastruct. Solut. 4 (1) (2019) 63. https://doi.org/10.1007/s41062-019-0249-5.

P. Wang, Z.J. Dong, Y.Q. Tan, Z.Y. Liu, Anti-ageing properties of styrene-butadiene-styrene copolymer-modified asphalt combined with multi-walled carbon nanotubes, Road Mater. Pavement Des. 18 (3) (2017) 533–549. https://doi.org/10.1080/14680629.2016.1181561.

A. Goli, H. Ziari, A. Amini, Influence of Carbon Nanotubes on Performance Properties and Storage Stability of SBS Modified Asphalt Binders, J. Mater. Civ. Eng. 29 (8) (2017) 04017070. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001910.

E.H. Fini, P. Hajikarimi, M. Rahi, F. Moghadas Nejad, Physiochemical, Rheological, and Oxidative Aging Characteristics of Asphalt Binder in the Presence of Mesoporous Silica Nanoparticles, J. Mater. Civ. Eng. 28 (2) (2016) 04015133. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001423.

H. Ezzat, S. El-Badawy, A. Gabr, E.-S.I. Zaki, T. Breakah, Evaluation of Asphalt Binders Modified with Nanoclay and Nanosilica, Procedia Eng. 143 (2016) 1260–1267. https://doi.org/10.1016/j.proeng.2016.06.119.

G.M. Amin, A. Esmail, Application of nano silica to improve self-healing of asphalt mixes, J. Cent. South Univ. 24 (5) (2017) 1019–1026. https://doi.org/10.1007/s11771-017-3504-y.

M. Saltan, S. Terzi, S. Karahancer, Examination of hot mix asphalt and binder performance modified with nano silica, Constr. Build. Mater. 156 (2017) 976–984. https://doi.org/10.1016/j.conbuildmat.2017.09.069.

M. Enieb, A. Diab, Characteristics of asphalt binder and mixture containing nanosilica, Int. J. Pavement Res. Technol. 10 (2) (2017) 148–157. https://doi.org/10.1016/j.ijprt.2016.11.009.

H. Yao, Z. You, L. Li, C.H. Lee, D. Wingard, Y.K. Yap, X. Shi, S.W. Goh, Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica, J. Mater. Civ. Eng. 25 (11) (2013) 1619–1630. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690.

G. Shafabakhsh, M. Motamedi, M. Firouznia, M. Isazadeh, Experimental investigation of the effect of asphalt binder modified with nanosilica on the rutting, fatigue and performance grade, Petrol. Sci. Technol. 37 (13) (2019) 1495–1500. https://doi.org/10.1080/10916466.2018.1476534.

H. Nazari, K. Naderi, F. Moghadas Nejad, Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles, Constr. Build. Mater. 170 (2018) 591–602. https://doi.org/10.1016/j.conbuildmat2018.03.107.

N. Saboo, R. Kumar, P. Kumar, A. Gupta, Ranking the Rheological Response of SBS- and EVA-Modified Bitumen Using MSCR and LAS Tests, J. Mater. Civ. Eng. 30 (8) (2018) 04018165. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002367.

I.L. Al-Qadi, P.J. Yoo, M.A. Elseifi, S. Nelson, Creep Behavior of Hot-Mix Asphalt due to Heavy Vehicular Tire Loading, J. Eng. Mech. 135 (11) (2009) 1265–1273. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:11(1265).

A.P. Dueñas, A.P. Lepe, E.M. Martinez, V.C. Ibañez, Relationships Between Zero Shear Viscosity, Low Shear Viscosity and Mscrt Tests and En 12697-22 Rutting Test, 5th Eurasphalt Eurobitume Congr., Istanbul, Turkey, 2012, pp. 13–15.

R. Dongré, J. D’Angelo, Refinement of Superpave High-Temperature Binder Specification Based on Pavement Performance in the Accelerated Loading Facility, Transp. Res. Rec. 1829 (2003) 39–46. https://doi.org/10.3141/1829-06.

P. Hajikarimi, M. Rahi, F. Moghadas Nejad, Comparing different rutting specification parameters using high temperature characteristics of rubber-modified asphalt binders, Road Mater. Pavement Des. 16 (4) (2015) 751–766. https://doi.org/10.1080/14680629.2015.1063533.

J. Zhang, L.F. Walubita, A.N.M. Faruk, P. Karki, G.S. Simate, Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance — A laboratory study, Constr. Build. Mater. 94 (2015) 218–227. https://doi.org/10.1016/j.conbuildmat.2015.06.044.

S.E. Zoorob, J.P. Castro-Gomes, L.A. Pereira Oliveira, J. O’Connell, Investigating the Multiple Stress Creep Recovery bitumen characterisation test, Constr. Build. Mater. 30 (2012) 734–745. https://doi.org/10.1016/j.conbuildmat.2011.12.060.

J. De Visscher, J. De Visscher, A. Vanelstaete, J. De Visscher, J. De Visscher, A. Vanelstaete, Practical test methods for measuring the zero shear viscosity of bituminous binders, Mater. Struct. 37 (5) (2003) 360–364. https://doi.org/10.1617/14128.

J.A. D Angelo, The relationship of the mscr test to rutting, Road Mater. Pavement Des. 10 (sup1) (2009) 61–80. https://doi.org/10.1080/14680629.2009.9690236.

R. Dongré, J. D’Angelo, G. Reinke, A. Shenoy, New Criterion for Superpave High-Temperature Binder Specification, Transp. Res. Rec. 1875 (2004) 22–32. https://doi.org/10.3141/1875-04.

R. Delgadillo, D. Cho, H. Bahia, Part 1: Bituminous Materials: Nonlinearity of Repeated Creep and Recovery Binder Test and Relationship with Mixture Permanent Deformation, Transp. Res. Rec. 1962 (2006) 3–11. https://doi.org/10.3141/1962-01.

O.-V. Laukkanen, H. Soenen, T. Pellinen, S. Heyrman, G. Lemoine, Creep-recovery behavior of bituminous binders and its relation to asphalt mixture rutting, Mater. Struct. 48 (12) (2015) 4039–4053. https://doi.org/10.1617/s11527-014-0464-7.

V. Radhakrishnan, M. Ramya Sri, K. Sudhakar Reddy, Evaluation of asphalt binder rutting parameters, Constr. Build. Mater. 173 (2018) 298–307. https://doi.org/10.1016/j.conbuildmat.2018.04.058.

Z. Hossain, D. Ghosh, M. Zaman, K. Hobson, Use of the Multiple Stress Creep Recovery (MSCR) Test Method to Characterize Polymer-Modified Asphalt Binders, J. Test. Eval. 44 (1) (2016) 20140061. https://doi.org/10.1520/JTE20140061.

N. Saboo, P. Kumar, Analysis of Different Test Methods for Quantifying Rutting Susceptibility of Asphalt Binders, J. Mater. Civ. Eng. 28 (7) (2016) 04016024. https://doi.org/10.1061/(asce)mt.1943-5533.0001553.

A. Behnood, A. Shah, R.S. McDaniel, M. Beeson, J. Olek, High-Temperature Properties of Asphalt Binders: Comparison of Multiple Stress Creep Recovery and Performance Grading Systems, Transp. Res. Rec. 2574 (2016) 131–143. https://doi.org/10.3141/2574-15.

T.L.J. Wasage, J. Stastna, L. Zanzotto, Rheological analysis of multi-stress creep recovery (MSCR) test, Int. J. Pavement Eng. 12 (6) (2011) 561–568. https://doi.org/10.1080/10298436.2011.573557.

M.D.I. Domingos, A.L. Faxina, L.L.B. Bernucci, Characterization of the rutting potential of modified asphalt binders and its correlation with the mixture’s rut resistance, Constr. Build. Mater. 144 (2017) 207–213. https://doi.org/10.1016/j.conbuildmat2017.03.171.

J. D’Angelo, G. Reinke, H. Bahia, H. Wen, C.M. Johnson, M. Marasteanu, Development in Asphalt Binder Specifications, Transportation Research Board, Washington DC, USA, 2010. https://doi.org/10.17226/22903.

F.A. Batista, B. Hofko, J. De Visscher, T. Tanghe, M. Sá da Costa, Towards improved correlations between bitumen properties and rutting resistance of bituminous mixtures, IOP Conf. Ser. Mater. Sci. Eng. 236 (2017) 012001. https://doi.org/10.1088/1757-899X/236/1/012001.

N. Tabatabaee, H.A. Tabatabaee, Multiple Stress Creep and Recovery and Time Sweep Fatigue Tests, Transp. Res. Rec. 2180 (2010) 67–74. https://doi.org/10.3141/2180-08.

Carl M. Johnson, Estimating asphalt binder fatigue resistance using an accelerated test method, (Doctoral dissertation), Univ. of Wisconsin-Madison, Madison, WI, USA, 2010.

C. Hintz, R. Velasquez, C. Johnson, H. Bahia, Modification and validation of linear amplitude sweep test for binder fatigue specification, Transp. Res. Rec. (2011) 99–106. https://doi.org/10.3141/2207-13.

M. Sabouri, D. Mirzaeian, A. Moniri, Effectiveness of Linear Amplitude Sweep (LAS) asphalt binder test in predicting asphalt mixtures fatigue performance, Constr. Build. Mater. 171 (2018) 281–290. https://doi.org/10.1016/j.conbuildmat.2018.03.146.

C. Johnson, H. Bahia, Evaluation of an accelerated procedure for fatigue characterization of asphalt binders, Publ. Road Mater. Pavement Des. Madison, WI, USA, 2010. http://uwmarc.wisc.edu/files/linearamplitudesweep/RMPD10_LAS_CMJ_HB-100321.pdf.

L. Sun, X. Xin, J. Ren, Inorganic Nanoparticle-Modified Asphalt with Enhanced Performance at High Temperature, J. Mater. Civ. Eng. 29 (3) (2017) 04016227. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001750.

F.M. Nejad, H. Nazari, K. Naderi, F. Karimiyan Khosroshahi, M. Hatefi Oskuei, Thermal and rheological properties of nanoparticle modified asphalt binder at low and intermediate temperature range, Petrol. Sci. Technol. 35 (7) (2017) 641–646. https://doi.org/10.1080/10916466.2016.1276589.

F. Leiva-Villacorta, A. Vargas-Nordcbeck, Optimum content of nano-silica to ensure proper performance of an asphalt binder, Road Mater. Pavement Des. 20 (2) (2019) 414–425. https://doi.org/10.1080/14680629.2017.1385510.

American Society for Testing and Materials, Standard Test Method for Effects of Heat and Air on Asphaltic Materials (Thin-Film Oven Test). ASTM-D1754, D1754/D1754M 09 (Reapproved 2014). ASTM International, West Conshohocken, PA, USA, 2014.

American Society for Testing and Materials, Standard Practice for Accelerated Ageing of Asphalt Binder Using a Pressurized Ageing Vessel (PAV), Annu. B. Am. Soc. Test. Mater. Stand. ASTM D6521. ASTM International, West Conshohocken, PA, USA, 2008.

Bureau of Indian Standards, Methods for Testing Tar and Bituminous Materials, 06, New Delhi, India, 2007.

H. Wang, X. Liu, P. Apostolidis, T. Scarpas, Non-Newtonian Behaviors of Crumb Rubber-Modified Bituminous Binders, Appl. Sci. 8 (10) (2018) 1760. https://doi.org/10.3390/app8101760.

N.M. Wasiuddin, R. Saha, W. King, L. Mohammad, Effects of Temperature and Shear Rate on Viscosity of Sasobit ® — Modified Asphalt Binders, 5 (6) (1997) 369–378.

A. Gorden, Airey, Gordon Dan, Rheological characteristics of polymer modified and aged bitumens, (PhD thesis), University of Nottingham, France, 1997.

M.O. Marasteanu, D.A. Anderson, Techniques for Determining Errors in Asphalt Binder Rheological Data, Transp. Res. Rec. 1766 (2001) 32–39. https://doi.org/10.3141/1766-05.

G.D. Airey, Road Materials and Pavement Design Use of Black Diagrams to Identify Inconsistencies in Rheological Data Use of Black Diagrams to Identify Inconsistencies in Rheological Data, Road Mater. Pavement Des. 3 (4) (2002) 403–424.

American Society for Testing and Materials, Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. D7175-15. ASTM International, West Conshohocken, PA, USA, 2015.

American Society for Testing and Materials, Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM D7405-15. ASTM International, West Conshohocken, PA, USA, 2015.

M. Anwar Parvez, H.I. Al-Abdul Wahhab, R.A. Shawabkeh, I.A. Hussein, Asphalt modification using acid treated waste oil fly ash, Constr. Build. Mater. 70 (2014) 201–209. https://doi.org/10.1016/j.conbuildmat.2014.07.045.

H. Zhang, Z. Chen, G. Xu, C. Shi, Evaluation of aging behaviors of asphalt binders through different rheological indices, Fuel. 221 (2018) 78–88. https://doi.org/10.1016/j.fuel.2018.02.087.

J. Qui, M.F.C. van de Ven, S. Wu, J. Yu, A.A.A. Molenaar, Investigating the Self Healing Capability of Bituminous Binders, Road Mater. Pavement Des. 10 (sup1) (2009) 81–94. https://doi.org/10.3166/rmpd.10HS.81-94.

J. Read, D. Whiteoak, The Shell bitumen handbook, Thomas Telford, London, UK, 2003. https://doi.org/10.1680/sbh.32200.

G. Liu, S. Wu, M. van de Ven, J. Yu, A. Molenaar, Influence of sodium and organo-montmorillonites on the properties of bitumen, Appl. Clay Sci. 49 (1–2) (2010) 69–73. https://doi.org/10.1016/j.clay.2010.04.005.

J.P. Hsu, C.F. Shie, S. Tseng, Sedimentation of a cylindrical particle in a Carreau fluid, J. Colloid Interface Sci. 286 (1) (2005) 392–399. https://doi.org/10.1016/j.jcis.2005.01.041.

R. B. Bird, P.J. Carreau, A nonlinear viscoelastic model for polymer solutions and melts—I, Chem. Eng. Sci. 23 (5) (1968) 427–434. https://doi.org/10.1016/0009-2509(68)87018-6.

P.J. Carreau, Rheological Equations From Molecular Network Theories, Trans Soc Rheol. 16 (1) (1972) 99–127. https://doi.org/10.1122/1.549276.

G. Airey, Rheological properties of styrene butadiene styrene polymer modified road bitumens, Fuel. 82 (2003) 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7.

Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Mater. Sci. Eng. A. 483–484 (2008) 148–152. https://doi.org/10.1016/j.msea.2006.10.184.

C.L. Li, Q.S. Mei, J.Y. Li, F. Chen, Y. Ma, X.M. Mei, Hall-Petch relations and strengthening of Al-ZnO composites in view of grain size relative to interparticle spacing, Scr. Mater. 153 (2018) 27–30. https://doi.org/10.1016/j.scriptamat.2018.04.042.

X. Xing, J. Pei, C. Shen, R. Li, J. Zhang, J. Huang, D. Hu, Performance and Reinforcement Mechanism of Modified Asphalt Binders with Nano-Particles, Whiskers, and Fibers, Appl. Sci. 9 (15) (2019) 2995. https://doi.org/10.3390/app9152995.

D.G. Morris, Strengthening mechanisms in nanocrystalline metals, in: Nanostructured Met. Alloy. Process. Microstruct. Mech. Prop. Appl., Woodhead Publishing Limited, Sawston, Cambridge, UK, 2011, pp. 299–328. https://doi.org/10.1533/9780857091123.3.299.

C. Hou, X. Song, W — Cu composites with submicron- and nanostructures: progress and challenges, NPG Asia Mater. 11 (1) (2019) 1–20. https://doi.org/10.1038/s41427-019-0179-x.