Rheological effect of the concentration of nanoparticles in cassava starch

Springer Science and Business Media LLC - Tập 4 - Trang 2889-2896 - 2019
César de Jesús Alarcón-Hernández1, Esteban A. González-García1, Luis Medina-Torres2, Patricio Morales-Pacheco1
1Ingeniería en Nanotecnología, Instituto Tecnológico Superior de Poza Rica (ITSPR), Veracruz, México
2Departamento de farmacia, Universidad Nacional Autónoma de México (UNAM), Coyoacán, México

Tóm tắt

Biodegradable material was prepared from cassava starch in combination with zinc oxide nanoparticles (ZnO NPs) to give the properties of microbial growth resistance, glycerin concentrations were varied to 5%, 10%, and 20% (w/v) for the study of the rheological properties. The nanoparticles were characterized by a spectrophotometer where an exciton peak at 370 nm was obtained. The different samples were subjected to a thermomechanical study through an AR-G2 hybrid rheometer, using a parallel plane geometry of 20 mm, a weak gel behavior is observed, it is a slimming material and it is thermostable, it is also established that the zinc oxide concentration nanoparticles do not affect the mechanical behavior of the material.

Tài liệu tham khảo

Avérous L., Poller E., Green Energy Technology, Springer Verlag, London, (2012). Muhammadi, Shabina, Afzal M., Hameed S., Green Chem Lett Rev, (2015). Billmeyer F.W., Ciencias de los polímeros, (1ra edición, España, 1975) p. 3. Fritz H.G., European commission, Stuttgart German June (1994). P. Matzinos et al., Journal of applied Polymer Sciencie, 79, 2548–2557 (2000). Betancourt R., Reyes P., Puente B., Ávila O., Rodríguez C., Cadenas O., Lira S., Garcia C., Journal of Nanomaterials 5:5 pages, 2013). Behera S, Debata A Y, Nayak PL, J Asian Sci Res., 1:27–56, (2011). Padmavathy N., Rajagopalan V., Science and Technology of Advanced Material. 9, (2008). Rabieh S., Bagheri M., Heydari M., Badiei E., 26, 244–250, (2014). R. Rossetti, J.L. ElLison, J.M. Gibson and L.E. &us, J. Chem. Phys. 80, 4464, (1984). A. Pojtik, H. Weller, U. Koch and A. Henglein, Ber. Bunsenges. Physilc. Chem. 88, 969, (1984). Ki J. L., Haekwan O., Minuk J., Keekeun L., Microelectronic Engineering, 111, 105–109 (2013). Sushil K. K.; Randeep L.; Mehta S.K., Ahmad U., Materials letters, 106, 385–389 (2013). Al-Gaashani, R., Radiman, S., Daud, A.R., Tabet, N., & Al-Douri, Y., Ceramics International, 39(3), 2283–2292, (2013). Ruiz, i. Nanotecnología en Alimentos. UPV/OCW 12 (2016). Chaisawang, M., Suphantharika, M. Food Hydrocolloids, 20(5), 641–649. (2006). Eliasson, A.C. Diario de estudios de textura, 17(3), 253–265, (1986). Eliasson, A.C. Diario de estudios de textura. 17(4), 357–375, (1986). Chaisawang, M., & Suphantharika, M. Carbohydrate Polymers, 6.7(3), 288–295, (2005). López, O.V., et al., Food Hydrocolloids. 43: p. 18–24 (2015). Mensitieri, G., et al., Trends in Food Science & Technology. 22(2): p. 72–80 (2011). Shaw, M.T. and W.J. MacKnight, Introduction to polymer viscoelasticity: John Wiley & Sons. p. 15 (2005).