Rheological behavior of 10W40 base oil containing different combinations of MWCNT-Al2O3 nanoparticles and determination of the target nano-lubricant for industrial applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cui X, Li C, Yang M, Liu M, Gao T, Wang X, Said Z, Sharma S, Zhang Y (2023) Enhanced grindability and mechanism in the magnetic traction nanolubricant grinding of Ti-6Al-4V. Tribol Int 186:108603. https://doi.org/10.1016/j.triboint.2023.108603
Zhang X, Li C, Zhou Z, Liu B, Zhang Y, Yang M, Gao T, Liu M, Zhang N, Said Z, Sharma S, Muhammad Ali H (2023) Vegetable oil-based nanolubricants in machining: from physicochemical properties to application. Chin J Mech Eng 36:76. https://doi.org/10.1186/s10033-023-00895-5
Shekoofa O, Wang J, Li D (2023) Fabrication of n-type nanocrystalline silicon thin-film by magnetron sputtering and antimony induced crystallization. Arch Adv Eng Sci. https://doi.org/10.47852/bonviewAAES32021040
Alizadeh A, Jasim Mohammed K, Fadhil Smaisim G, Hadrawi SK, Zekri H, Taheri Andani H, Nasajpour-Esfahani N, Toghraie D (2023) Evaluation of the effects of the presence of ZnO -TiO2 (50 %–50 %) on the thermal conductivity of Ethylene Glycol base fluid and its estimation using Artificial Neural Network for industrial and commercial applications. J Saudi Chem Soc 27(2):101613. https://doi.org/10.1016/j.jscs.2023.101613
Dai X, Andani HT, Alizadeh A, Abed AM, Smaisim GF, Hadrawi SK, Karimi M, Shamsborhan M, Toghraie D (2023) Using Gaussian Process Regression (GPR) models with the Matérn covariance function to predict the dynamic viscosity and torque of SiO2/Ethylene glycol nanofluid: a machine learning approach. Eng Appl Artif Intell 122(106107):106107. https://doi.org/10.1016/j.engappai.2023.106107
Athab A, Lafta AJ, Hussein FH (2015) Modification of carbon nanotubes surface using different oxidizing agents. J Environ Anal Chem 2:e112
Ruhani B, Barnoon P, Toghraie D (2019) Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data. Physica A 525:616–627
Maxwell JC (1873) A treatise on electricity and magnetism, vol 1. Clarendon press, Oxford
Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47(5):560–568
Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab.(ANL), Argonne, IL (United States).
Bozorg MV, Doranehgard MH, Hong K, Xiong Q (2020) CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid. Renew Energy 145:2598–2614
Hemmat Esfe M (2017) Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids. J Therm Anal Calorim 127(3):2125–2131
Asadi A et al (2018) Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transfer. 117:474–486
Alidoust S, Zamani M, Jabbari M (2020) Sol-gel synthesis of nanoporous γ-alumina using TX-100 or gelatin/TX-100 mixture as effective catalysts for dehydration of alcohols. Iran J Catal 10(4):295–305
Zhang G, Zhang Z, Sun M, Yu Y, Wang J, Cai S (2022) The influence of the temperature on the dynamic behaviors of magnetorheological gel. Adv Eng Mater. https://doi.org/10.1002/adem.202101680
Zhang G, Chen J, Zhang Z, Sun M, Yu Y, WangCai JS (2022) Analysis of magnetorheological clutch with double cup-shaped gap excited by Halbach array based on finite element method and experiment. Smart Mater Struct. https://doi.org/10.1088/1361-665X/ac701a
Putra ABW (2020) Computer technology simulation towards power generation potential from coproduced fluids in south Lokichar oil fields. Int J Commun Comput Technol 8(2):9–12. https://doi.org/10.31838/ijccts/08.02.03
Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tools Manuf 122:55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.003
Gao T, Li C, Zhang Y, Yang M, Jia D, Jin T, Hou Y, Li R (2019) Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int 131:51–63. https://doi.org/10.1016/j.triboint.2018.10.025
Wang Y, Li C, Zhang Y, Li B, Yang M, Zhang X, Guo S, Liu G (2016) Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribol Int 99:198–210. https://doi.org/10.1016/j.triboint.2016.03.023
Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H, Wang J (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram Int 45(12):14908–14920. https://doi.org/10.1016/j.ceramint.2019.04.226
Jia D, Zhang Y, Li C, Yang M, Gao T, Said Z, Sharma S (2022) Lubrication-enhanced mechanisms of titanium alloy grinding using lecithin biolubricant. Tribol Int 169:107461. https://doi.org/10.1016/j.triboint.2022.107461
Li H, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu Bo, Zhang N, Said Z, Debnath S, Jamil M, Ali HM, Sharma S (2022) Cutting fluid corrosion inhibitors from inorganic to organic: progress and applications. Korean J Chem Eng. https://doi.org/10.1007/s11814-021-1057-0
Sulgani MT, Karimipour A (2019) Improve the thermal conductivity of 10w40-engine oil at various temperature by addition of Al2O3/Fe2O3 nanoparticles. J Mol Liq 283:660–666
Faulkner D, Khotan M, Shekarriz R (2003) Practical design of a 1000 W/cm/sup 2/cooling system [High Power Electronics]. In Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003. (pp. 223–230). IEEE.
Wu S, Zhu D, Li X, Li H, Lei J (2009) Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim Acta 483(1–2):73–77
Hosseini M, Ghader S (2010) A model for temperature and particle volume fraction effect on nanofluid viscosity. J Mol Liq 153(2–3):139–145
Soltani O, Akbari M (2016) Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study. Physica E 84:564–570
Ruhani B, Toghraie D, Hekmatifar M, Hadian M (2019) Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data. Physica A 525:741–751
Esfe MH, Raki HR, Emami MRS, Afrand M (2019) Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol 342:808–816
Esfe MH, Esfandeh S, Arani AAA (2019) Proposing a modified engine oil to reduce cold engine start damages and increase safety in high temperature operating conditions. Powder Technol 355:251–263
Esfe MH, Rostamian H, Sarlak MR (2018) A novel study on rheological behavior of ZnO-MWCNT/10w40 nanofluid for automotive engines. J Mol Liq 254:406–413
Alidoust S, AmoozadKhalili F, Hamedi S (2022) Investigation of effective parameters on relative thermal conductivity of SWCNT (15%)-Fe3O4 (85%)/water hybrid ferro-nanofluid and presenting a new correlation with response surface methodology. Colloids Surf, A 645:128625
Bindu MV, Joselin Herbert GM (2022) Thermal conductivity and viscosity of Al2O3-ZnO-MWCNT-EG ternary nanofluid. Int J Energy Res 46:17478
Chu YM, Ibrahim M, Saeed T, Berrouk AS, Algehyne EA, Kalbasi R (2021) Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modeling. J Mol Liq 333:115969
Esfe MH, Abad ATK, Fouladi M (2019) Effect of suspending optimized ratio of nano-additives MWCNT-Al2O3 on viscosity behavior of 5W50. J Mol Liq 285:572–585
Tu J, Fan F, Qi C, Ding Z, Liang L (2022) Experimental study on the particle fouling properties of magnetic nanofluids in a corrugated tube with built-in twisted turbulator under variable magnetic field. Powder Technol 400:117216
Wang Y, Qi C, Zhao R, Wang C (2022) Study on the mechanism of modified surface and magnetic nanofluids on cooling performance of wireless charging equipment under magnetic field. Appl Therm Eng 208:118258
Tu J, Qi C, Li K, Tang Z (2022) Numerical analysis of flow and heat characteristic around micro-ribbed tube in heat exchanger system. Powder Technol 395:562–583
Tang Z, Qi C, Tian Z, Chen L (2022) Thermal management of electronic components based on new wave bio-inspired structures and nanofluids. Int Commun Heat Mass Transfer 131:105840