Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: An experimental study and a neural network simulating
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shoghl, 2016, Electrical conductivity, viscosity, and density of different nanofluids: an experimental study, Exp. Therm. Fluid Sci.
Esfe, 2014, Thermal conductivity of Al2O3/water nanofluids, Measurement, correlation, sensitivity analysis, and comparisons with literature reports, J. Therm. Anal. Calorim., 117, 675, 10.1007/s10973-014-3771-x
M.H. Esfe, W.M. Yan, M. Akbari, A. Karimipour, M. Hassani, Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids, Int. Commun. Heat Mass Transf., 68, 2015, pp. 248–251.
Hemmat Esfe, 2017, Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40:60) aqueous nanofluid using NSGA-II coupled with RSM, J. Mol. Liq., 238, 545, 10.1016/j.molliq.2017.04.056
Hemmat Esfe, 2017, Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications, Physica E, 90, 194, 10.1016/j.physe.2017.02.015
M. Hemmat Esfe, M.R.H. Ahangar, M. Rejvani, D. Toghraie, M.H. Hajmohammad, Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data, Int. Commun. Heat Mass Transf., 75, 2016, pp. 192–196.
A. Karimipour, H. Alipour, O.A. Akbari, D.T. Semiromi, M.H. Esfe, Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nano-fluid with varying volume fraction in a rectangular two-dimensional microchannel, Indian J. Sci. Technol., 8 (15), 2015.
Hemmat Esfe, 2017, An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management, Appl. Therm. Eng., 111, 1202, 10.1016/j.applthermaleng.2016.09.091
Esfe, 2015, Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids, Int. J. Heat Mass Transf., 89, 783, 10.1016/j.ijheatmasstransfer.2015.05.100
Esfe, 2017, Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN, Int. Commun. Heat Mass Transf., 82, 154, 10.1016/j.icheatmasstransfer.2016.08.015
Esfe, 2017, Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method, Appl. Therm. Eng., 112, 1648, 10.1016/j.applthermaleng.2016.10.129
Hemmat Esfe, 2016, Thermal conductivity enhancement of SiO2–MWCNT (85: 15%)–EG hybrid nanofluids, J. Therm. Anal. Calorim., 128, 249, 10.1007/s10973-016-5893-9
Abbasian Arani, 2016, An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube, Heat Mass Transf., 52, 1693, 10.1007/s00231-015-1686-0
Hemmat Esfe, 2017, Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications, Appl. Therm. Eng., 10.1016/j.applthermaleng.2017.06.077
Esfe, 2017, Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions, Exp. Therm. Fluid Sci., 80, 384, 10.1016/j.expthermflusci.2016.07.011
Esfe, 2017, Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO2 nanofluids, J. Therm. Anal. Calorim., 127, 2125, 10.1007/s10973-016-5725-y
Rostamian, 2017, An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation, J. Mol. Liq., 231, 364, 10.1016/j.molliq.2017.02.015
Hemmat Esfe, 2016, The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM, Int. Commun. Heat Mass Transf., 79, 128, 10.1016/j.icheatmasstransfer.2016.09.015
Alirezaie, 2017, Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-engine oil hybrid nanofluids and modelling the results with artificial neural networks, J. Mol. Liq., 10.1016/j.molliq.2017.05.121
Hemmat Esfe, 2017, The investigation of effects of temperature and nanoparticles volume fraction on the viscosity of copper oxide-ethylene glycol nanofluids, Period. Polytech. Chem. Eng., 10.3311/PPch.9741
Hemmat Esfe, 2017, Experimental investigation of switchable behavior of CuO-MWCNT (85%–15%)/10W-40 hybrid nano-lubricants for applications in internal combustion engines, J. Mol. Liq., 10.1016/j.molliq.2017.06.075
Binu, 2015, Formulation and viscosity analysis of TiO2 nanoparticle dispersions in engine oil, Am. J. Mater. Sci., 5, 198
Halelfadl, 2013, Viscosity of carbon nanotubes water-based nanofluids: influence of concentration and temperature, Int. J. Therm. Sci., 71, 111, 10.1016/j.ijthermalsci.2013.04.013
Hemmat Esfe, 2017, Non-Newtonian power-law behavior of TiO2/SAE 50 nano-lubricant: an experimental report and new correlation, J. Mol. Liq., 232, 219, 10.1016/j.molliq.2017.02.014
Esfe, 2014, An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions, Exp. Therm. Fluid Sci., 55, 1, 10.1016/j.expthermflusci.2014.02.011
Sharifpur, 2015, Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods, Int. Commun. Heat Mass Transf., 68, 208, 10.1016/j.icheatmasstransfer.2015.09.002
Esfe, 2014, An empirical investigation on the dynamic viscosity of Mg(OH)2–ethylene glycol in different solid concentrations and proposing new correlation based on experimental data, Int. J. Nat. Eng. Sci., 8, 29
Bobbo, 2012, Viscosity of water based SWCNH and TiO2 nanofluids, Exp. Therm. Fluid Sci., 36, 65, 10.1016/j.expthermflusci.2011.08.004
Rashin, 2013, Viscosity studies on novel copper oxide–coconut oil nanofluid, Exp. Therm. Fluid Sci., 48, 67, 10.1016/j.expthermflusci.2013.02.009
Buonomo, 2015, Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method, Appl. Therm. Eng., 91, 181, 10.1016/j.applthermaleng.2015.07.077
Esfe, 2015, An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol, Int. Commun. Heat Mass Transf., 67, 173, 10.1016/j.icheatmasstransfer.2015.07.009
Esfe, 2015, Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid, Int. Commun. Heat Mass Transf., 66, 189, 10.1016/j.icheatmasstransfer.2015.06.003
Esfe, 2015, Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid, Int. Commun. Heat Mass Transf., 65, 47, 10.1016/j.icheatmasstransfer.2015.04.006
Hemmat Esfe, 2015, Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles, Int. J. Heat Mass Transf., 88, 728, 10.1016/j.ijheatmasstransfer.2015.05.010
Kole, 2010, Viscosity of alumina nanoparticles dispersed in car engine coolant, Exp. Therm. Fluid Sci., 34, 677, 10.1016/j.expthermflusci.2009.12.009
Hemmat Esfe, 2017, Experimental investigation on non-Newtonian behavior of Al2O3-MWCNT/5W50 hybrid nano-lubricant affected by alterations of temperature, concentration and shear rate for engine applications, Int. Commun. Heat Mass Transf., 82, 97, 10.1016/j.icheatmasstransfer.2017.02.006
Chen, 2009, Rheological behaviour of ethylene glycol-titanate nanotube nanofluids, J. Nanopart. Res., 11, 1513, 10.1007/s11051-009-9599-9
Tajik Jamal-Abad, 2014, An experimental investigation of rheological characteristics of non-Newtonian nanofluids, J. Heat Mass Transf. Res. (JHMTR), 1, 17
Tseng, 2003, Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions, Mater. Sci. Eng. A, 355, 186, 10.1016/S0921-5093(03)00063-7
Abareshi, 2011, Fabrication, characterization, and measurement of viscosity of α-Fe2O3-glycerol nanofluids, J. Mol. Liq., 163, 27, 10.1016/j.molliq.2011.07.007
Ghanbarpour, 2014, Thermal properties and rheological behavior of water based Al2O3 nanofluid as a heat transfer fluid, Exp. Therm. Fluid Sci., 53, 227, 10.1016/j.expthermflusci.2013.12.013
Zhao, 2015, Modeling and prediction of viscosity of water-based nanofluids by radial basis function neural networks, Powder Technol., 281, 173, 10.1016/j.powtec.2015.04.058
Atashrouz, 2014, Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system, Fluid Phase Equilib., 372, 43, 10.1016/j.fluid.2014.03.031
Hemmat Esfe, 2015, Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids, Int. Commun. Heat Mass Transf., 68, 248, 10.1016/j.icheatmasstransfer.2015.09.001
Esfe, 2015, Thermal conductivity of Cu/TiO 2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation, Int. Commun. Heat Mass Transf., 66, 100, 10.1016/j.icheatmasstransfer.2015.05.014
Hemmat Esfe, 2015, Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid, Int. Commun. Heat Mass Transf., 68, 50, 10.1016/j.icheatmasstransfer.2015.06.013
Esfe, 2015, Modeling of thermal conductivity of ZnO-EG using experimental data and ANN methods, Int. Commun. Heat Mass Transf., 63, 35, 10.1016/j.icheatmasstransfer.2015.01.001
Hemmat Esfe, 2016, Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle: effects of temperature and solid volume fraction, J. Therm. Anal. Calorim., 126, 643, 10.1007/s10973-016-5506-7
Hemmat Esfe, 2015, Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation, Int. Commun. Heat Mass Transf.
Hemmat Esfe, 2015, Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg (OH) 2–EG using experimental data, Int. Commun. Heat Mass Transf., 67, 46, 10.1016/j.icheatmasstransfer.2015.06.015
Hemmat Esfe, 2016, Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data, Int. Commun. Heat Mass Transf., 75, 192, 10.1016/j.icheatmasstransfer.2016.04.002
Madhesh, 2014, Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO 2 hybrid nanofluids, Exp. Therm. Fluid Sci., 52, 104, 10.1016/j.expthermflusci.2013.08.026
Cieśliński, 2015, Measurement of temperature-dependent viscosity and thermal conductivity of alumina and titania thermal oil nanofluids, Arch. Thermodyn., 36, 35, 10.1515/aoter-2015-0031
Hemmat Esfe, 2014, Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids, Int. Commun. Heat Mass Transf., 58, 176, 10.1016/j.icheatmasstransfer.2014.08.037
Sabiha, 2016, Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids, Int. J. Heat Mass Transf., 93, 862, 10.1016/j.ijheatmasstransfer.2015.10.071
Hemmat Esfe, 2015, Thermal conductivity of Cu/TiO 2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation, Int. Commun. Heat Mass Transf., 66, 100, 10.1016/j.icheatmasstransfer.2015.05.014
Heris, 2015, Experimental comparison among thermal characteristics of three metal oxide nanoparticles/turbine oil-based nanofluids under laminar flow regime, Int. J. Thermophys., 36, 760, 10.1007/s10765-015-1852-0
Bakhshan, 2014, A new correlation for viscosity of nanofluids with considering the temperature dependence, J. Comput. Theor. Nanosci., 11, 583, 10.1166/jctn.2014.3398
Hemmat Esfe, 2014, An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions, Exp. Therm. Fluid Sci., 55, 1, 10.1016/j.expthermflusci.2014.02.011
Hemmat Esfe, 2014, Thermal conductivity of Al2O3/water nanofluids, J. Therm. Anal. Calorim., 117, 675, 10.1007/s10973-014-3771-x
Einstein, 1906, Eine neue bestimmung der moleküldimensionen, Ann. Phys., 324, 289, 10.1002/andp.19063240204