Rheological Properties of Cross‐Linked Hyaluronan–Gelatin Hydrogels for Tissue Engineering

Macromolecular Bioscience - Tập 9 Số 1 - Trang 20-28 - 2009
Janssen L. Vanderhooft1, Mataz Alcoutlabi2, Jules J. Magda3,2, Glenn D. Prestwich4,5
1Department of Bioengineering, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
2Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84108-1257, USA
3Department of Chemical Engineering, University of Utah, 50 South Central Campus Drive, Room 3290, Salt Lake City, Utah 84108-1257, USA
4Center for Therapeutic Biomaterials, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA
5Department of Medicinal Chemistry, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108-1257, USA

Tóm tắt

Abstract

Hydrogels that mimic the natural extracellular matrix (ECM) are used in three‐dimensional cell culture, cell therapy, and tissue engineering. A semi‐synthetic ECM based on cross‐linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross‐linking density were the main determinants of gel stiffness. Increase in the ratio of thiol‐modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component.

magnified image

Từ khóa


Tài liệu tham khảo

10.1002/jcb.21386

10.1529/biophysj.106.084988

10.1007/s10439-005-8159-4

10.1016/j.jbiotec.2007.08.017

10.1083/jcb.200405004

10.1016/j.biomaterials.2006.09.038

10.1016/j.addr.2007.08.007

10.1016/S0076-6879(98)98041-7

10.1126/science.1116995

10.2307/1543109

10.1529/biophysj.105.073114

10.1016/j.cell.2006.06.044

10.1016/j.biomaterials.2007.09.003

Duck F. A., 1990, Physical Properties of Tissue: A Comprehensive Reference Book

10.1146/annurev.bioeng.5.040202.121623

10.1016/j.jbiomech.2003.12.027

10.1016/j.neuroimage.2007.08.030

10.1243/0954411991534933

10.1016/S0301-5629(98)00110-0

Crocker J. C., 2007, Methods in Cell Biology, 141

10.1152/ajpcell.00193.2007

10.1016/j.ceb.2006.12.002

10.1016/S0006-3495(02)75319-8

10.1529/biophysj.106.081109

10.1016/j.biomaterials.2007.08.020

10.1016/S0142-9612(99)00248-3

10.1016/j.biomaterials.2007.08.018

10.1021/bm050361c

10.1016/S0091-679X(07)83022-6

10.1016/S0091-679X(07)83003-2

10.1021/bm0498023

10.1103/PhysRevE.71.021504

10.1529/biophysj.103.037812

10.1091/mbc.10.4.935

10.1016/B978-008044382-9/50053-4

10.1006/scdb.2000.0243

10.1089/ten.2006.12.3201

10.1007/978-0-387-34133-0_9

10.1021/bm025603c

10.1016/j.biomaterials.2003.08.014

10.1021/ar7000827

10.1016/j.fertnstert.2006.07.1532

10.1016/j.ymeth.2008.01.010

10.1177/000348940511400902

10.1016/0076-6879(87)43020-6

10.1016/S0142-9612(03)00267-9

Flory P. J., 1953, Principles of Polymer Chemistry

Boudou T., 2006, Biorheology, 43, 721

10.4161/org.6152

10.1002/jor.20148