Rheologic controls on slab dynamics

American Geophysical Union (AGU) - Tập 8 Số 8 - 2007
M. I. Billen1, Greg Hirth2
1Department of Geology, University of California, Davis, One Shields Avenue,, Davis, California, 95616 USA
2Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

Tóm tắt

Several models have been proposed to relate slab geometry to parameters such as plate velocity or plate age. However, studies on the observed relationships between slab geometry and a wide range of subduction parameters show that there is not a simple global relationship between slab geometry and any one of these other subduction parameters for all subduction zones. Numerical and laboratory models of subduction provide a method to explore the relative importance of different physical processes in determining subduction dynamics. Employing 2‐D numerical models with a viscosity structure constrained by laboratory experiments for the deformation of olivine, we show that the observed range in slab dip and the observed trends between slab dip and convergence velocity, subducting plate age, and subduction duration can be reproduced without trench motion (i.e., slab roll‐back) for locations away from slab edges. Successful models include a stiff slab that is 100–1000 times more viscous than previous estimates from models of plate bending, the geoid, and global plate motions. We find that slab dip in the upper mantle depends primarily on slab strength and plate boundary coupling, with a small dependence on subducting plate age. Once the slab sinks into the lower mantle the primary processes controlling slab evolution are (1) the ability of the stiff slab to transmit stresses up dip, (2) resistance to slab descent into the higher‐viscosity lower mantle, and (3) subduction‐induced flow in the mantle‐wedge corner.

Từ khóa


Tài liệu tham khảo

10.1016/j.epsl.2006.12.027

10.1029/2004JB002999

10.1126/science.240.4857.1317

10.1016/S0012-821X(01)00482-4

10.1029/2004JB003308

10.1029/2005GL023457

10.1046/j.1365-246X.2003.01915.x

10.1016/S0012-821X(00)00015-7

10.1016/j.epsl.2006.03.011

10.1016/0012-821X(96)00023-4

10.1016/S0012-821X(02)00586-1

10.1029/1999JB900149

10.1126/science.1074161

10.1016/j.epsl.2005.07.025

10.1111/j.1365-246X.2005.02519.x

10.1029/1999RG000068

10.1029/2001JB000896

10.1029/2005JB003792

10.1029/JB091iB07p07205

10.1111/j.1365-246X.1979.tb02567.x

10.1029/97JB02488

10.1038/335317a0

10.1029/2003GC000681

10.1029/JB089iB07p06003

Hager B. H., 1991, NATO Advanced Research Workshop on Glacial Isostasy, Sea‐Level, and Mantle Rheology, Erice, Italy, July 27–Aug. 4, 1990, 493

10.1016/S0012-821X(03)00242-5

10.1016/S0031-9201(98)00156-3

Hirth G., 2003, Plastic Deformation of Minerals and Rocks, 97

10.1029/138GM06

Isacks B. L., 1977, Island Arc, Deep Sea Trenches and Back‐Arc Basins, Maurice Ewing Series

10.1029/RG024i002p00217

10.1029/2000JB900380

10.1080/0141861021000025829

10.1126/science.260.5109.771

10.1016/S0031-9201(01)00223-0

10.1029/138GM13

Kemp D. V.(1992) A model for the subduction mechanics of flexible lithosphere and its viscous coupling to the mantle using power‐law rheologies Ph.D. thesis Univ. of Calif. Los Angeles.

10.1029/GM117p0133

10.1029/96JB03553

10.1016/S0031-9201(01)00218-7

10.1029/95JB01460

10.1016/j.pepi.2003.11.004

10.1029/2005GC000917

10.1111/j.1365-246X.1969.tb00259.x

10.1016/0012-821X(95)00221-W

10.1029/2005GL025390

10.1029/91JB00204

10.1016/S0012-821X(97)00016-2

10.1029/1999GL011037

10.1111/j.1365-246X.2006.03079.x

10.1038/308505a0

10.1038/nature05615

10.1016/S0012-821X(98)00249-0

10.1029/2005GC001056

10.1038/270334a0

10.1038/361626a0

10.1016/S0031-9201(00)00139-4

10.1029/98JB01076

10.1029/JB083iB12p05892

10.1111/j.1365-246X.1993.tb05588.x

10.1016/S0012-821X(00)00240-5

10.1016/S0012-821X(01)00383-1

10.1016/0264-3707(84)90004-8

10.1016/S0012-821X(99)00124-7

10.1038/383245a0

10.1029/98JB00605