Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tái cấu trúc tương tác protein–protein–chất chuyển hóa trong quá trình chuyển tiếp diauxic ở nấm men
Tóm tắt
Trong nấm men budding Saccharomyces cerevisiae, sự chuyển đổi từ quá trình lên men hiếu khí sang phát triển hô hấp được ngắt quãng bởi một giai đoạn ngừng tăng trưởng, được gọi là sự chuyển tiếp diauxic, đi kèm với sự tái cấu trúc chuyển hóa đáng kể, bao gồm sự giải áp của gluconeogenesis và thiết lập hô hấp ti thể. Các nghiên cứu trước đây đã báo cáo hàng trăm protein và hàng chục chất chuyển hóa tích lũy một cách khác biệt trong quá trình chuyển tiếp diauxic. Để đánh giá sự khác biệt trong tương tác protein–protein (PPIs) và tương tác protein–chất chuyển hóa (PMIs), các mẫu nấm men được thu hoạch trong giai đoạn lên men sử dụng glucose, giai đoạn sử dụng ethanol và giai đoạn hô hấp tĩnh sớm đã được phân tích bằng cách sử dụng phương pháp thử nghiệm chuyển đổi nhiệt đồng nhất (iTSA) và chuẩn phân tích khối phổ đồng phân tách, PROMIS. Trong khi iTSA theo dõi sự thay đổi trong độ ổn định protein và cung cấp thông tin về trạng thái tương tác protein, PROMIS sử dụng sự đồng phân tách để phân định các PPIs và PMIs khả thi. Tập dữ liệu thu được bao gồm 1627 protein và 247 chất chuyển hóa, hàng trăm protein và hàng chục chất chuyển hóa được đặc trưng bởi độ ổn định nhiệt khác biệt và/hoặc hồ sơ phân tách, tạo thành một nguồn tài nguyên mới để khai thác cho các PPIs và PMIs điều chỉnh. Các ví dụ được thảo luận ở đây bao gồm (i) sự phân ly của phần lõi và phần điều chỉnh của proteasome trong giai đoạn tĩnh sớm, (ii) sự gắn kết khác biệt của co-factor pyridoxal phosphate với các enzyme chuyển hóa amino acid và (iii) các tương tác khả thi, cụ thể theo giai đoạn giữa các dipeptide chứa proline và các enzyme của chuyển hóa carbon trung tâm.
Từ khóa
Tài liệu tham khảo
Alvers AL, Fishwick LK, Wood MS, Doreen Hu, Chung SH, Dunn Jr WA, Aris JP (2009) Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 8(4):353–369
Aryal UK, Xiong Yi, McBride Z, Kihara D, Xie J, Hall MC, Szymanski DB (2014) A proteomic strategy for global analysis of plant protein complexes. Plant Cell 26(10):3867–3882
Bajorek M, Finley D, Glickman MH (2003) Proteasome disassembly and downregulation is correalted with viabolity during stationary phase. Curr Biol 13:1140–1144
Ball KA, Webb KJ, Coleman SJ, Cozzolino KA, Jacobsen J, Jones KR, Stowell MHB, Old WM (2020) An Isothermal shift assay for proteome scale drug-target identification. Commun Biol 3(1):1–10
Becher I, Andrés-Pons A, Romanov N, Stein F, Schramm M, Baudin F, Helm D, Kurzawa N, Mateus A, Mackmull MT, Typas A, Müller CW, Bork P, Beck M, Savitski MM (2018) Pervasive protein thermal stability variation during the cell cycle. Cell 173(6):1495-1507.e18
Blighe K, Rana S, Lewi M (2022) EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R Package Version 1.8.0
Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362
Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649
Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 2008(10):1–12
Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192(1):73–105
Brocchieri L, Karlin S (2005) Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 33(10):3390–3400
Calderan-Rodrigues MJ, Luzarowski M, Monte-Bello CC, Minen RI, Zühlke BM, Nikoloski Z, Skirycz A, Caldana C (2021) Proteogenic dipeptides are characterized by diel fluctuations and target of rapamycin complex-signaling dependency in the model plant Arabidopsis thaliana. Front Plant Sci 12(December):1–15
Canelas AB, Harrison N, Fazio A, Zhang J, Pitkänen JP, Van Den Brink J, Bakker BM, Bogner L, Bouwman J, Castrillo JI, Cankorur A, Chumnanpuen P, Daran-Lapujade P, Dikicioglu D, Van Eunen K, Ewald JC, Heijnen JJ, Kirdar B, Mattila I, Mensonides FIC, Niebel A, Penttilä M, Pronk JT, Reuss M, Salusjärvi L, Sauer U, Sherman D, Siemann-Herzberg M, Westerhoff H, De Winde J, Petranovic D, Oliver SG, Workman CT, Zamboni N, Nielsen J (2010) Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun 1(9):1–8
Chan JNY, Vuckovic D, Sleno L, Olsen JB, Pogoutse O, Havugimana P, Hewel JA, Bajaj N, Wang Y, Musteata MF, Nislow C, Emili A (2012) Target identification by chromatographic co-elution: monitoring of drug-protein interactions without immobilization or chemical derivatization. Mol Cell Proteomics 11(7):M111-016642
Chaudhri VK, Salzler GG, Dick SA, Buckman MS, Sordella R, Karoly ED, Mohney R, Stiles BM, Elemento O, Altorki NK, McGraw TE (2014) Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol Cancer Res 23(1):1–7
Chen H (2018) VennDiagram: Generate High-Resolution Venn and Euler Plots. R Package Version 1.6.20
Cherest H, Thomas D, Surdin-Kerjan Y (1993) Cysteine biosynthesis in saccharomyces cerevisiae occurs through the transsulfuration pathway which has been built up by enzyme recruitment. J Bacteriol 175(17):5366–5374
Coa EY, Horan K, Backman T, Girke T (2022) ChemmineR. v. 3.14
Dai L, Zhao T, Bisteau X, Sun W, Prabhu N, Lim YT, Sobota RM, Kaldis P, Nordlund P (2018) Modulation of protein-interaction states through the cell cycle. Cell 173(6):1481-1494.e13
DeRisi JL, Iyer VR, Brown PO (1999) Exploring the metabolic and genetic control of gene expression on a genomic scale. Chemtracts 12(3):148–152
Duan G, Walther D (2015) The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput Biol 11(2):1–23
Galdieri L, Mehrotra S, Sean Yu, Vancura A (2010) Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS 14(6):629–638
Gassaway BM, Paulo JA, Gygi SP (2021) Categorization of phosphorylation site behavior during the diauxic shift in Saccharomyces cerevisiae. J Proteome Res 20(5):2487–2496
Geladaki A, Britovšek NK, Breckels LM, Smith TS, Vennard OL, Mulvey CM, Crook OM, Gatto L, Lilley KS (2019) Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat Commun 10(1):1–15
Giavalisco P, Li Y, Matthes A, Eckhardt A, Hubberten HM, Hesse H, Segu S, Hummel J, Köhl K, Willmitzer L (2011) Elemental formula annotation of polar and lipophilic metabolites using 13C, 15N and 34S isotope labelling, in combination with high-resolution mass spectrometry. Plant J 68(2):364–376
Gorka M, Swart C, Siemiatkowska B, Martínez-Jaime S, Skirycz A, Streb S, Graf A (2019) Protein complex identification and quantitative complexome by CN-PAGE. Sci Rep 9(1):1–14
Hammad N, Rosas-Lemus M, Uribe-Carvajal S, Rigoulet M, Devin A (2016) The crabtree and warburg effects: do metabolite-induced regulations participate in their induction? Biochimica et Biophysica Acta - Bioenergetics 1857(8):1139–1146
Heusel M, Frank M, Köhler M, Amon S, Frommelt F, Rosenberger G, Bludau I, Aulakh S, Linder MI, Liu Y, Collins BC, Gstaiger M, Kutay U, Aebersold R (2020) A global screen for assembly state changes of the mitotic proteome by SEC-SWATH-MS. Cell Syst 10(2):133-155.e6
Hu LZ, Ming FG, Tan JH, Wolf E, Kuzmanov U, Wan C, Phanse S, Changjiang Xu, Schertzberg M, Fraser AG, Bader GD, Emili A (2019) EPIC: software toolkit for elution profile-based inference of protein complexes. Nat Methods 16(8):737–742
Huang JX, Lee G, Cavanaugh KE, Chang JW, Gardel ML, Moellering RE (2019) High throughput discovery of functional protein modifications by hotspot thermal profiling. Nat Methods 16(9):894–901
Jarzab A, Kurzawa N, Hopf T, Moerch M, Zecha J, Leijten N, Bian Y, Musiol E, Maschberger M, Stoehr G, Becher I, Daly C, Samaras P, Mergner J, Spanier B, Angelov A, Werner T, Bantscheff M, Wilhelm M, Klingenspor M, Lemeer S, Liebl W, Hahne H, Savitski MM, Kuster B (2020) Meltome atlas—thermal proteome stability across the tree of life. Nat Methods 17(5):495–503
Leuenberger P, Ganscha S, Kahraman A, Cappelletti V, Boersema PJ, Von Mering C, Claassen M, Picotti P (2017) Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 355(6327):eaai7825
Li X, Snyder M (2011) Metabolites as global regulators: a new view of protein regulation. BioEssays 33(7):485–489
Li Y, Kuhn M, Zukowska-Kasprzyk J, Hennrich ML, Kastritis PL, O’Reilly FJ, Phapale P, Beck M, Gavin AC, Bork P (2021) Coupling proteomics and metabolomics for the unsupervised identification of protein-metabolite interactions in Chaetomium thermophilum. PLoS ONE 16(7 July):1–13
Lindsley JE, Rutter J (2006) Whence cometh the allosterome? Proc Natl Acad Sci USA 103(28):10533–10535
Luzarowski M, Vicente R, Kiselev A, Wagner M, Schlossarek D, Erban A, Perez L, de Souza D, Childs IW, Luzarowska U, Górka M, Sokołowska EM, Kosmacz M, Moreno JC, Brzezińska A, Vegesna B, Kopka J, Fernie AR, Willmitzer L, Ewald JC, Skirycz A (2021) Global mapping of protein-metabolite interactions in Saccharomyces cerevisiae reveals that ser-leu dipeptide regulates phosphoglycerate kinase activity. Commun Biol 4(1):1–15
Mallam AL, Sae-Lee W, Schaub JM, Fan Tu, Anna Battenhouse Yu, Jang J, Kim J, Wallingford JB, Finkelstein IJ, Marcotte EM, Drew K (2019) Systematic discovery of endogenous human ribonucleoprotein complexes. Cell Rep 29(5):1351-1368.e5
Mateus A, Bobonis J, Kurzawa N, Stein F, Helm D, Hevler J, Typas A, Savitski MM (2018) Thermal proteome profiling in bacteria: probing protein state in vivo. Mol Syst Biol 14(7):1–15
Mateus A, Hevler J, Bobonis J, Kurzawa N, Shah M, Mitosch K, Goemans CV, Helm D, Stein F, Typas A, Savitski MM (2020) The functional proteome landscape of Escherichia coli. Nature 588(7838):473–478
McWhite CD, Papoulas O, Drew K, Dang Vy, Leggere JC, Sae-Lee W, Marcotte EM (2021) Co-Fractionation/mass spectrometry to identify protein complexes. STAR Protocols 2(1):100370
Messerchmidt A, Worbs M, Steegborn C, Wahl MC, Huber R, Laber B, Clausen T (2003) Determinants of enzymatic specificity in the cys-met-metabolism PLP-dependent enzymes family: crystal structure of cystathionine γ-lyase from yeast and intrafamiliar structure comparison. Biol Chem 384(3):373–386
Molina DM, Jafari R, Ignatushchenko M, Seki T (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341(July):84–88
Moreno JC, Rojas BE, Vicente R, Gorka M, Matz T, Chodasiewicz M, Peralta-Ariza JS, Zhang Y, Alseekh S, Childs D, Luzarowski M, Nikoloski Z, Zarivach R, Walther D, Hartman MD, Figueroa CM, Iglesias AA, Fernie AR, Skirycz A (2021) Tyr-Asp inhibition of glyceraldehyde 3-phosphate dehydrogenase affects plant redox metabolism. EMBO J 40(15):1–16
Murphy JP, Stepanova E, Everley RA, Paulo JA, Gygi SP (2015) Comprehensive temporal protein dynamics during the diauxic shift in Saccharomyces cerevisiae. Mol Cell Proteomics 14(9):2454–2465
Naka K, Jomen Y, Ishihara K, Kim J, Ishimoto T, Bae EJ, Mohney RP, Stirdivant SM, Oshima H, Oshima M, Kim DW, Nakauchi H, Takihara Y, Kato Y, Ooshima A, Kim SJ (2015) Dipeptide species regulate P38MAPK-Smad3 signalling to maintain chronic myelogenous leukaemia stem cells. Nat Commun 6:1–14
O’Connell JD, Tsechansky M, Royall A, Boutz DR, Ellington AD, Marcotte EM (2014) A proteomic survey of widespread protein aggregation in yeast. Mol BioSyst 10(4):851–861
Ono B-I-I, Naito K, Shirahige Y-I-I, Yamamoto M (1991) Regulation of cystathionine Γ-lyase in Saccharomyces cerevisiae. Yeast 7(8):843–848
Ono B-I, Tanaka K, Naito K, Heike C, Shinoda S, Yamamoto S, Ohmiro S, Oshima T, Toh-E A (1996) Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology 6(4):439–444
Potel CM, Kurzawa N, Becher I, Typas A, Mateus A, Savitski MM (2021) Impact of phosphorylation on thermal stability of proteins. Nat Methods 18(7):757–759
Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670
Sahu I, Mali SM, Sulkshane P, Xu C, Rozenberg A, Morag R, Sahoo MP, Singh SK, Ding Z, Wang Y, Day S, Cong Y, Kleifeld O, Brik A, Glickman MH (2021) The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat Commun 12(1):1–21
Salas D, Greg Stacey R, Akinlaja M, Foster LJ (2020) Next-generation interactomics: considerations for the use of co-elution to measure protein interaction networks. Mol Cell Proteomics 19(1):1–10
Sampaio-Marques B, Ludovico P (2018) Linking cellular proteostasis to yeast longevity. FEMS Yeast Res 18(5):1–11
Savitski MM, Reinhard FBM, Franken H, Werner T, Savitski MF, Eberhard D, Molina DM, Jafari R, Dovega RB, Klaeger S, Kuster B, Nordlund P, Bantscheff M, Drewes G (2014) Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346(6205):1255784
Schlossarek D, Luzarowski M, Sokołowska E, Górka M, Willmitzer L, Skirycz A (2021) PROMISed: a novel web-based tool to facilitate analysis and visualization of the molecular interaction networks from co-fractionation mass spectrometry (CF-MS) experiments. Comput Struct Biotechnol J 19:5117–5125
Smith IR, Hess KN, Bakhtina AA, Valente AS, Rodríguez-Mias RA, Villén J (2021) Erratum to: High Throughput Discovery of Functional Protein Modifications by Hotspot Thermal Profiling (Nature Methods, (2019), 16, 9, (894–901), DOI: 10.1038/S41592-019-0499-3). Nat Methods 18(7):760–762
Sokolowska EM, Schlossarek D, Luzarowski M, Skirycz A (2019) PROMIS: global analysis of PROtein-metabolite interactions. Curr Protocols Plant Biol 4(e20101):1–18
Strehmel N, Hoehenwarter W, Mönchgesang S, Majovsky P, Krüger S, Scheel D, Lee J (2017) Stress-related mitogen-activated protein kinases stimulate the accumulation of small molecules and proteins in Arabidopsis thaliana root exudates. Front Plant Sci 8(July):1–13
Sun W, Dai L, Han Yu, Puspita B, Zhao T, Li F, Tan JL, Lim YT, Chen MW, Sobota RM, Tenen DG, Prabhu N, Nordlund P (2019) Monitoring structural modulation of redox-sensitive proteins in cells with MS-CETSA. Redox Biol 24(March):101168
Thirumalaikumar VP, Wagner M, Balazadeh S, Skirycz A (2021) Autophagy is responsible for the accumulation of proteogenic dipeptides in response to heat stress in Arabidopsis thaliana. FEBS J 288(1):281–292
Toney MD (2005) Reaction specificity in pyridoxal phosphate enzymes. Arch Biochem Biophys 433(1):279–287
Toney MD (2011) Controlling reaction specificity in pyridoxal phosphate enzymes. Biochimica et Biophysica Acta - Proteins and Proteomics 1814(11):1407–1418
Verma K, Saxena K, Donaka R, Chaphalkar A, Rai MK, Shukla A, Zaidi Z, Dandage R, Shanmugam D, Chakraborty K (2020) Distinct metabolic states of a cell guide alternate fates of mutational buffering through altered proteostasis. Nat Commun 11(1):1–5
Veyel D, Kierszniowska S, Kosmacz M, Sokolowska EM, Michaelis A, Luzarowski M, Szlachetko J, Willmitzer L, Skirycz A (2017) System-wide detection of protein-small molecule complexes suggests extensive metabolite regulation in plants. Sci Rep 7(February):1–8
Veyel D, Sokolowska EM, Moreno JC, Kierszniowska S, Cichon J, Wojciechowska I, Luzarowski M, Kosmacz M, Szlachetko J, Gorka M, Méret M, Graf A, Meyer EH, Willmitzer L, Skirycz A (2018) PROMIS, global analysis of PROtein-metabolite interactions using size separation in Arabidopsis thaliana. J Biol Chem 293(32):12440–12453
Volkening JD, Stecker KE, Sussman MR (2019) Proteome-wide analysis of protein thermal stability in the model higher plant Arabidopsis thaliana. Mol Cell Proteomics 18(2):308–319
Wagner M, Zhang B, Tauffenberger A, Schroeder FC, Skirycz A (2021) experimental methods for dissecting the terraincognita of protein-metabolite interactomes. Curr Opin Syst Biol 28:100403
Wan C, Borgeson B, Phanse S, Fan Tu, Drew K, Clark G, Xiong X, Kagan O, Kwan J, Bezginov A, Chessman K, Pal S, Cromar G, Papoulas O, Ni Z, Boutz DR, Stoilova S, Havugimana PC, Guo X, Malty RH, Sarov M, Greenblatt J, Mohan Babu W, Derry B, Tillier ER, Wallingford JB, Parkinson J, Marcotte EM, Emili A (2015) Panorama of ancient metazoan macromolecular complexes. Nature 525(7569):339–344
Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236
Werner-Wahsburne M, Braun E, Johnston GC, Singer RA (1996) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 135(1):97–109
Williams A, Chiles EN, Conetta D, Pathmanathan JS, Cleves PA, Putnam HM, Xiaoyang S, Bhattacharya D (2021) Metabolomic shifts associated with heat stress in coral holobionts. Sci Adv 7(1):4210
Xia Z, Webster A, Fangyong Du, Piatkov K, Ghislain M, Varshavsky A (2008) Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J Biol Chem 283(35):24011–24028
Yang L, Fountain JC, Ji P, Ni X, Chen S, Lee RD, Kemerait RC, Guo B (2018) Deciphering drought-induced metabolic responses and regulation in developing Maize Kernels. Plant Biotechnol J 16(9):1616–1628
Yu G, Wang LG, Han Y, He QY (2012) ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287
Zampar GG, Kümmel A, Ewald J, Jol S, Niebel B, Picotti P, Aebersold R, Sauer U, Zamboni N, Heinemann M (2013) Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Mol Syst Biol 9:651
