Reward Anticipation Is Differentially Modulated by Varenicline and Nicotine in Smokers

Neuropsychopharmacology - Tập 40 Số 8 - Trang 2038-2046 - 2015
John R. Fedota1, Matthew T. Sutherland2, Betty Jo Salmeron1, Thomas J. Ross1, L. Elliot Hong3, Elliot A. Stein1
1Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, USA
2Department of Psychology, Florida International University, Miami, USA
3Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson BA, Faulkner ML, Rilee JJ, Yantis S, Marvel CL (2013). Attentional bias for nondrug reward is magnified in addiction. Exp Clin Psychopharmacol 21: 499.

Aubin HJ, Bobak A, Britton JR, Oncken C, Billing CB, Gong J, Reeves KR (2008). Varenicline versus transdermal nicotine patch for smoking cessation: results from a randomized open-label trial. Thorax 63: 717–724.

Berridge KC, Robinson TE (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28: 309–369.

Brandon TH, Drobes DJ, Unrod M, Heckman BW, Oliver JA, Roetzheim RC, Small BJ (2011). Varenicline effects on craving, cue reactivity, and smoking reward. Psychopharmacology 218: 391–403.

Brody AL, Mandelkern MA, London ED, Childress AR, Lee GS, Bota RG, Jarvik ME (2002). Brain metabolic changes during cigarette craving. Arch Gen Psychiatry 59: 1162–1172.

Carter CS, Van Veen V (2007). Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn Affect Behav Neurosci 7: 367–379.

Chaudhri N, Caggiula AR, Donny EC, Palmatier MI, Liu X, Sved AF (2006). Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology 184: 353–366.

Chen G, Saad ZS, Britton JC, Pine DS, Cox RW (2013). Linear mixed-effects modeling approach to FMRI group analysis. Neuroimage 73: 176–190.

Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, O'Neill BT (2005). Varenicline: an α4β2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 48: 3474–3477.

Cox RW (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29: 162–173.

De Biasi M, Dani JA (2011). Reward, addiction, withdrawal to nicotine. Annu RevNeurosci 34: 105.

Everitt BJ, Robbins TW (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8: 1481–1489.

Exley R, Maubourguet N, David V, Eddine R, Evrard A, Pons S, Faure P (2011). Distinct contributions of nicotinic acetylcholine receptor subunit α4 and subunit α6 to the reinforcing effects of nicotine. Proc Natl Acad Sci USA 108: 7577–7582.

Faessel HM, Gibbs MA, Clark DJ, Rohrbacher K, Stolar M, Burstein AH (2006). Multiple‐dose pharmacokinetics of the selective nicotinic receptor partial agonist, varenicline, in healthy smokers. J Clin Pharmacol 46: 1439–1448.

Franklin T, Wang Z, Suh JJ, Hazan R, Cruz J, Li Y, Childress AR (2011). Effects of varenicline on smoking cue–triggered neural and craving responses. Arch Gen Psychiatry 68: 516–526.

Friedman L, Glover GH, Krenz D, Magnotta V (2006). Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization. Neuroimage 32: 1656–1668.

Fucito LM, Toll BA, Wu R, Romano DM, Tek E, O’Malley SS (2011). A preliminary investigation of varenicline for heavy drinking smokers. Psychopharmacology 215: 655–663.

Goldstein RZ, Volkow ND (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159: 1642–1652.

Goldstein RZ, Volkow ND (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12: 652–669.

Hendrickson LM, Zhao-Shea R, Pang X, Gardner PD, Tapper AR (2010). Activation of α4* nAChRs is necessary and sufficient for varenicline-induced reduction of alcohol consumption. J Neurosci 30: 10169–10176.

Hester R, Luijten M (2014). Neural correlates of attentional bias in addiction. CNS Spectr 19: 231–238.

Hickey C, van Zoest W (2012). Reward creates oculomotor salience. Curr Biol 22: R219–R220.

Hyman SE, Malenka RC, Nestler EJ (2006). Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29: 565–598.

Kahneman D, Tversky A (1979). Prospect theory: an analysis of decision under risk. Econometrica 263–291.

Kaufman JN, Ross TJ, Stein EA, Garavan H (2003). Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci 23: 7839–7843.

Knutson B, Westdorp A, Kaiser E, Hommer D (2000). FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12: 20–27.

Knutson B, Adams CM, Fong GW, Hommer D (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21: RC159.

Koob GF, Le Moal M (2008). Neurobiological mechanisms for opponent motivational processes in addiction. Philos Trans R Soc B Biol Sci 363: 3113–3123.

Koob GF, Volkow ND (2009). Neurocircuitry of addiction. Neuropsychopharmacology 35: 217–238.

Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12: 535–540.

Lieberman MD, Cunningham WA (2009). Type I and Type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci 4: 423–428.

Luijten M, Littel M, Franken IH (2011). Deficits in inhibitory control in smokers during a Go/NoGo task: an investigation using event-related brain potentials. PLoS ONE 6: e18898.

McClernon FJ, Kozink RV, Lutz AM, Rose JE (2009). 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology 204: 25–35.

McKee SA, Harrison EL, O'Malley SS, Krishnan-Sarin S, Shi J, Tetrault JM, Balchunas E (2009). Varenicline reduces alcohol self-administration in heavy-drinking smokers. Biol Psychiatry 66: 185–190.

Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12: 241–268.

Noël X, Brevers D, Bechara A (2013). A neurocognitive approach to understanding the neurobiology of addiction. Curr Opin Neurobiol 23: 632–638.

O'Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002). Neural responses during anticipation of a primary taste reward. Neuron 33: 815–826.

Oncken C, Gonzales D, Nides M, Rennard S, Watsky E, Billing CB, Reeves K (2006). Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation. Arch Int Med 166: 1571–1577.

Patterson F, Jepson C, Strasser AA, Loughead J, Perkins KA, Gur RC, Lerman C (2009). Varenicline improves mood and cognition during smoking abstinence. Biol Psychiatry 65: 144–149.

Pergadia ML, Der-Avakian A, D’Souza MS, Madden PA, Heath AC, Shiffman S, Pizzagalli DA (2014). Association between nicotine withdrawal and reward responsiveness in humans and rats. JAMA Psychiatry 71: 1238–1245.

Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004). The role of the medial frontal cortex in cognitive control. Science 306: 443–447.

Rollema H, Hajós M, Seymour PA, Kozak R, Majchrzak MJ, Guanowsky V, Williams KE (2009). Preclinical pharmacology of the α4β2 nAChR partial agonist varenicline related to effects on reward, mood and cognition. Biochem Pharmacol 78: 813–824.

Rose EJ, Ross TJ, Salmeron BJ, Lee M, Shakleya DM, Huestis MA, Stein EA (2013). Acute nicotine differentially impacts anticipatory valence-and magnitude-related striatal activity. Biol Psychiatry 73: 280–288.

Steensland P, Simms JA, Holgate J, Richards JK, Bartlett SE (2007). Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking. Proc Natl Acad Sci 104: 12518–12523.

Sutherland MT, Carroll AJ, Salmeron BJ, Ross TJ, Hong LE, Stein EA (2013a). Down-regulation of amygdala and insula functional circuits by varenicline and nicotine in abstinent cigarette smokers. Biol Psychiatry 74: 538–546.

Sutherland MT, Carroll AJ, Salmeron BJ, Ross TJ, Hong LE, Stein EA (2013b). Individual differences in amygdala reactivity following nicotinic receptor stimulation in abstinent smokers. Neuroimage 66: 585–593.

Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labaraca C, Lester HA (2004). Nicotine activation of apha4* receptors: sufficient for reward, tolerance, and sensitization. Science 306: 1029–1032.

Yacubian J, Gläscher J, Schroeder K, Sommer T, Braus DF, Büchel C (2006). Dissociable systems for gain-and loss-related value predictions and errors of prediction in the human brain. J Neurosci 26: 9530–9537.

Zhang X, Salmeron BJ, Ross TJ, Gu H, Geng X, Yang Y, Stein EA (2011). Anatomical differences and network characteristics underlying smoking cue reactivity. Neuroimage 54: 131–141.