Revisiting the lacquer peels method with pyroclastic deposits: sediment plates, a precise, fine scale imaging method and powerful outreach tool

Springer Science and Business Media LLC - Tập 7 - Trang 1-13 - 2018
Guilhem Amin Douillet1,2, Ulrich Kueppers1, Célia Mato3, Quentin Chaffaut1,4, Mélanie Bouysson4, Renate Reschetizka1, Inga Hoelscher1, Patrick Witting1, Kai-Uwe Hess1, Alexander Cerwenka5, Donald B Dingwell1, Benjamin Bernard6
1Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, München, Germany
2Institut für Geologie, Universität Bern, Bern, Switzerland
3Université Joseph Fourier Grenoble, Grenoble, France
4Ecole et Observatoire des Sciences de la Terre, Université de Strasbourg, Strasbourg, France
5Zoologische Staatssammlung München, München, Germany
6Instituto Geofisico, Escuela Politécnica Nacional Quito, Quito, Ecuador

Tóm tắt

Pyroclastic sedimentary successions record an eruptive history modulated by transport and depositional phases. Here, a field technique of outcrop impregnation was used to document pyroclastic sediments at the scale of individual laminae. The details so obtained have the potential to reveal new insights into the dynamics of transport and deposition of pyroclastic currents and fallout. Sediment plates (a type of lacquer peels) represent a sampling method whereby a thin plate of undisturbed sediments is obtained directly from the outcrop. A low-viscosity, hardening epoxy resin is applied to a freshly exposed cross-section of an unconsolidated deposit and impregnates a surface layer of the cross-section via capillary forces before solidifying. Upon hardening, a solid plate (0.5–5 cm thick and up to 2 m in length) of the sedimentary formation can be recovered and transported with full preservation of the initial organization of the particles. Sediment plates are capable of recording and highlighting details of stratification to a very fine scale and high degree of precision. This method represents a valuable tool for research, education, and exhibition purposes. A dataset of 50 m2 of sediment plates was created from the primary sedimentary structures emplaced during 1) the August 2006 eruption of Tungurahua volcano (Ecuador), 2) the Laacher See eruption (Germany) and 3) Astroni surge deposits (Campi Flegrei, Italy). This dataset has been put to use in several contexts: 1) analysis of sedimentation processes at the boundary-layer scale, 2) data comparison with remote measurements (e.g., ground penetrating radar), 3) archiving and conservation, 4) as teaching material and 5) for dissemination exercises during exhibition in museums.

Tài liệu tham khảo

Alexander J, Bridge JS, Cheel RJ, Leclair SF. Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds. Sedimentology. 2001;48(1):133–52. Baas JH, Van Kesteren W, Postma G. Deposits of depletive high-density turbidity currents: a flume analogue of bed geometry, structure and texture. Sedimentology. 2004;51:1053–88. Bernard J, Eychenne J, Le Pennec JL, Narváez D. Mass budget partitioning during explosive eruptions: insights from the 2006 paroxysm of Tungurahua volcano, Ecuador. Geochem Geophys Geosyst. 2016;17(8):3224–40. Bouma A.H. (1969) Methods for the Study of Sedimentary Structures. Wiley, New York; N.Y., 458 pp. Brown RJ, Bonadonna C, Durant AJ. A review of volcanic ash aggregation. Phys Chem Earth. 2012;45-46:65–78. De Rosa, R., Frazzetta, G., La Volpe, L. (1992). An approach for investigating the depositional mechanism of fine-grained surge deposits. The example of the dry surge deposits at “La Fossa di Vulcano”. J Volcanol Geotherm Res, 51(4), 305–321. Dellino P, Isaia R, Veneruso M. Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (southern Italy). J Volcanol Geotherm Res. 2004;133(1):211–28. Douillet G.A., Bernard B., Bouysson M., Chaffaut Q., Dingwell D.B., Gegg L., Holscher I., Kueppers U., Mato C., Ritz. V., Schlunegger F., Witting P. (2018a) Pyroclastic dune bedforms: macroscale structures and lateral variations. Examples from the 2006 pyroclastic currents at Tungurahua (Ecuador). Sedimentology. https://doi.org/10.1111/sed.12542. Douillet GA, Bouysson M, Gegg L. Overturned strata in deposits of dilute pyroclastic density currents, field and analogue data. Portland, Oregon: IAVCEI general Assembly 2017; 2017. Douillet G.A., Chaffaut Q., Schlunegger F., Kueppers U., Dingwell D.B. (2018b) Shark fins: overturned flame patterns due to waves at the shear horizon of a flow-bed boundary. Examples from the 2006 pyroclastic currents deposits at Tungurahua. Manuscript submitted to sedimentology. Preprint available at https://eartharxiv.org/e8apk/. Douillet GA, Kueppers U, Mato C, Bouysson M, Broschat N. G’Schichten von Tungurahua, Ablagerungen des Vulkanausbruchs vom 17. August 2006. Munich Germany: Museum Reich der Kristalle; 2016. Exhibition from 17.08.2016–20.09.2016 Douillet GA, Pacheco DA, Kueppers U, Letort J, Tsang-Hin-Sun È, Bustillos J, Hall M, Ramón P, Dingwell DB. Dune bedforms produced by dilute pyroclastic density currents from the august 2006 eruption of Tungurahua volcano. Ecuador, Bulletin of Volcanology. 2013b;75:1–20. Douillet G.A., Taisne B., Tsang-Hin-Sun E., Mueller S.K., Kueppers U., Dingwell D.B. (2015) Syn-eruptive, soft-sediment deformation of dilute pyroclastic density current deposits: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves. Solid earth discussion. https://www.solid-earth.net/6/553/2015/se-6-553-2015.pdf. Douillet GA, Tsang-Hin-Sun È, Kueppers U, Letort J, Pacheco DA, Goldstein F, Von Aulock F, Lavallée Y, Hanson JB, Bustillos J, et al. Sedimentology and geomorphology of the deposits from the august 2006 pyroclastic density currents at Tungurahua volcano, Ecuador. Bull Volcanol. 2013a;75:1–21. Dujardin JR. Imagerie géoradar (GPR) en milieu hétérogène: application aux failles actives en Mongolie et aux dépôts pyroclastiques du Tungurahua (Equateur): Doctoral dissertation. Strasbourg; Université de Strasbourg; 2014. Fischer AG, Garrison RE. The role of the Mediterranean region in the development of sedimentary geology: a historical overview. Sedimentology. 2009;56(1):3–41. Hall ML, Steele AL, Mothes PA, Ruiz MC. Pyroclastic density currents (PDC) of the 16–17 august 2006 eruptions of Tungurahua volcano, Ecuador: geophysical registry and characteristics. J Volcanol Geotherm Res. 2013;265:78–93. Isaia, R., D’Antonio, M., Dell’Erba, F., Di Vito, M., Orsi, G. (2004). The Astroni volcano: the only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res, 133(1), 171–192. Kelfoun K, Samaniego P, Palacios P, Barba D. Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol. 2009;71(9):1057. Klapper D, Kueppers U, Castro JM, Pacheco JMR, Dingwell DB. Impregnating unconsolidated pyroclastic sequences: a tool for detailed facies analysis. Geophys Res Abstr. 2010;12:EGU2010–11780. Kueppers U., Ayris P.M., Bernard B., Delmelle P., Dobson K., Douillet G.A., Lavallée Y., Mueller S.B., Dingwell D.B. (2016) Volcano vs. Environment: Where, when and why does ash aggregate? Cities on Volcanoes meeting, November 2016. Maarse H, Terwindt JHJ. A new method of making lacquer peel sections. Mar Geol. 1964;1(1):98–105. Melts, Glasses, Magmas. 17th Edition of the short course. 13–17.06.2016, Ludwig-Maximilians-Universität München. Munich Germany: Dingwell D.B; 2016. Melts, Glasses, Magmas. 18th Edition of the short course. 10–15.07.2017, Ludwig-Maximilians-Universität München. Munich Germany: Dingwell D.B.; 2017. Nio S.W., van den Berg J.H., Goesten M., Smulders F. (1980) Dynamics and sequential analysis of a mesotidal shoal and intershoal channel complex in the eastern Scheldt (southwestern Netherlands). Sediment Geol, 26 263–279. Obermöller M. (2007) Begleitschrift zur Sonderausstellung "Boden schreibt Geschichte. Lackprofile–Erdgeschichtliche Abziehbilder." Schriftenreihe des Landesmuseums für Natur und Mensch, Landesmuseum für Natur und Mensch 52. Primus-Verlag, ISBN: 3896789953, 9783896789952. 222pp. Owen G. Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology. 1996;43(2):279–93. Physics of Volcanoes 2017. Third workshop on Physics of Volcanoes, 8–9.03.2017, Ludwig-Maximilians-Universität München, Munich Germany. Hess. K.U. and Kueppers U. Schmincke HU, Fisher RV, Waters AC. Antidune and chute and pool structures in the base surge deposits of the Laacher see area, Germany. Sedimentology. 1973;20(4):553–74. Tüxen R. (1957) Die Schrift des Bodens: kurzer Führer durch die Sammlung von Bodenprofilen nordwestdeutscher Wald-und Heidegesellschaften aus der Bundesanstalt für Vegetationskartierung. Bundesanst. für Vegetationskartierung. Van Dam RL, Schlager W. Identifying causes of ground-penetrating radar reections using time-domain reectometry and sedimentological analyses. Sedimentology. 2000;47:435–49. Van den Berg J.H., Boersma J.R., Van Gelder A. (2007) Diagnostic sedimentary structures of the fluvial-tidal transition zone - evidence from deposits of the Rhine and Meuse. Netherlands Journal of Geosciences - Geologie en Mijnbouw 86–3 287–306. Van den Berg J.H., Nio S.W. (2010) Sedimentary structures and their relation to bedforms and flow conditions. EAGE publications, The Netherlands. ISBN 978-90-73781-76-4. Van den Bogaard P, Schmincke HU. The eruptive center of the late Quaternary Laacher see tephra. Geol Rundsch. 1984;73(3):933–80. Voigt E. Die Übertragung fossiler Wirbeltierleichen auf Zellulose-Filme, eine Bergungsmethode für Wirbeltiere aus der Braunkohle. Palaeontol Z. 1933;15:72–8. Voigt E. Ein neues Verfahren zur Konservierung von Bodenprofilen. Z. Pflanzenerneuerung. Düngung und Bodenkunde. 1936;45:111–5.