Review on thermal energy storage with phase change materials (PCMs) in building applications

Applied Energy - Tập 92 - Trang 593-605 - 2012
Dongshan Zhou1, Changying Zhao2, Yuan Tian1
1School of Engineering, University of Warwick, CV4 7AL, UK
2School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

US, Energy Information Administration, Office of Energy Markets and End Use, US, Department of Energy, Annual Energy Review 2009; August 2010.

US, Environmental Protection Agency. Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2008, US EPA # 430-R-10-006, Washington DC, USA, <http://www.epa.gov/globalwarming>.

Hadorn JC. Thermal energy storage for solar and low energy buildings. Universitat de Lleida; 2005.

Hough, 2006

Paksoy, 2007

Mehling, 2008

Dincer, 2010

Abhat, 1983, Low temperature latent heat thermal energy storage: heat storage materials, Solar Energy, 30, 313, 10.1016/0038-092X(83)90186-X

Hariri, 1988, A review of thermal storage systems used in building applications, Build Environ, 23, 1, 10.1016/0360-1323(88)90011-X

Zalba, 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl Therm Eng, 23, 251, 10.1016/S1359-4311(02)00192-8

Farid, 2004, A review on phase change energy storage: materials and applications, Energy Manage, 45, 1597, 10.1016/j.enconman.2003.09.015

Kludhair, 2004, A review on energy conservation in building applications with thermal storage by latent heat using phase change materials, Energy Manage, 45, 263, 10.1016/S0196-8904(03)00131-6

Tyagi, 2007, PCM thermal energy storage in buildings: a state of art, Renew Sust Energy Rev, 11, 1146, 10.1016/j.rser.2005.10.002

Kenisarin, 2007, Solar energy storage using phase change materials, Renew Sust Energy Rev, 11, 1913, 10.1016/j.rser.2006.05.005

Zhang, 2007, Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook, Build Environ, 42, 2197, 10.1016/j.buildenv.2006.07.023

Pasupathy, 2008, Phase change material-based building architechture for thermal management in residential and commercial establishments, Renew Sust Energy Rev, 12, 39, 10.1016/j.rser.2006.05.010

Sharma, 2009, Review on thermal energy storage with phase change materials and applications, Renew Sust Energy Rev, 13, 318, 10.1016/j.rser.2007.10.005

Zhu, 2009, Dynamic characteristics and energy performance of buildings using phase change materials: a review, Energy Convers Manage, 50, 3169, 10.1016/j.enconman.2009.08.019

Baetens, 2010, Phase change materials for building applications: a state-of-the art review, Energy Build, 42, 1361, 10.1016/j.enbuild.2010.03.026

Cabeza, 2011, Materials used as PCM in thermal energy storage in buildings: a review, Renew Sust Energy Rev, 15, 1675, 10.1016/j.rser.2010.11.018

Dipl.-Ing. Jens H. Dieckmann. Latent heat storage in concrete. University of Kaiserslautern, Germany; 2006. <http://www.eurosolar.de/>.

Zhang, 1999, A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials, Measur Sci Technol, 10, 201, 10.1088/0957-0233/10/3/015

Hong, 2004, Accuracy improvement of T-history method for measuring heat of fusion of various materials, Int J Refrig, 27, 360, 10.1016/j.ijrefrig.2003.12.006

Peck Jong, 2006, A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method, Int J Refrig, 29, 1225, 10.1016/j.ijrefrig.2005.12.014

Ting, 1987, Durability of latent heat storage tube sheets, Solar Energy, 39, 79, 10.1016/S0038-092X(87)80035-X

Fernanda, 1988, Salt hydrate used for latent heat storage: corrosion metals and reliability of thermal performance, Solar Energy, 41, 193, 10.1016/0038-092X(88)90136-3

Sharma, 1999, Accelerated thermal cycle test of latent-heat storage materials, Solar Energy, 66, 483, 10.1016/S0038-092X(99)00045-6

Sharma, 2002, Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications, Energy Convers Manage, 43, 1923, 10.1016/S0196-8904(01)00131-5

Kimura, 1988, Mixture of calcium chloride hexahydrate with salt hydrate or anhydrous salts as latent heat storage materials, Energy Convers Manage, 28, 197, 10.1016/0196-8904(88)90021-0

Shukla, 2008, Thermal cycling test of few selected inorganic and organic phase change materials, Renew Energy, 33, 2606, 10.1016/j.renene.2008.02.026

Tyagi, 2008, Thermal cycling testing of calcium chloride hexahydrate as a possible PCM for latent heat storage, Solar Energy Mater Solar Cell, 92, 891, 10.1016/j.solmat.2008.02.021

Bugaje, 1997, Enhancing the thermal response of latent heat storage systems, Int J Energy Res, 21, 759, 10.1002/(SICI)1099-114X(199707)21:9<759::AID-ER254>3.0.CO;2-7

Boomsma, 2003, Metal foams as compact high performance heat exchangers, Mech Mater, 35, 1161, 10.1016/j.mechmat.2003.02.001

Tian Y, Zhao CY. Heat transfer analysis for phase change materials (PCMs). In: The 11th international conference on energy storage (Effstock 2009), Stockholm; June 2009.

Zhao, 2010, Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs), Solar Energy, 84, 1402, 10.1016/j.solener.2010.04.022

Tian Y, Zhao CY. Thermal analysis in phase change materials (PCMs) embedded with metal foams. In: International heat transfer conference-14, 8–13 August, Washington, DC, USA; 2010.

Zhao CY, Zhou D, Wu ZG. Hear transfer enhancement of phase change materials (PCMs) in low and high temperature thermal storage by using porous materials. In: International heat transfer conference-14, 8–13 August, Washington, DC, USA; 2010.

Py, 2001, Paraffin/porous graphite-matrix composite as a high and constant power thermal storage material, Int J Heat Mass Transfer, 44, 2727, 10.1016/S0017-9310(00)00309-4

Fukai, 2003, Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling, Int J Heat Mass Transfer, 46, 4513, 10.1016/S0017-9310(03)00290-4

Chow, 1996, Thermal conductivity enhancement for phase change storage media, Int Commun Heat Mass Transfer, 23, 91, 10.1016/0735-1933(95)00087-9

Sari, 2009, Microencapsulated n-octacosane as phase change material for thermal energy storage, Solar Energy, 83, 1757, 10.1016/j.solener.2009.05.008

Zhou, 2011, Experimental investigations on heat transfer in phase change materials (PCMs) embedded with porous materials, Appl Therm Eng, 31, 970, 10.1016/j.applthermaleng.2010.11.022

Hawes, 1993, Latent heat storage in building materials, Energy Build, 20, 77, 10.1016/0378-7788(93)90040-2

Castell, 2010, Experimental study of using PCM in brick constructive solutions for passive cooling, Energy Build, 42, 534, 10.1016/j.enbuild.2009.10.022

Hawlader, 2002, Encapsulated phase change materials for thermal energy storage: experiments and simulation, Int J Energy Res, 26, 159, 10.1002/er.773

Cabeza, 2007, Use of microencapsulated PCM in concrete walls for energy savings, Energy Build, 39, 113, 10.1016/j.enbuild.2006.03.030

Inaba, 1997, Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material, Heat Mass Transfer, 32, 307, 10.1007/s002310050126

Xiao, 2002, Preparation and performance of shape stabilizes phase change thermal storage materials with high thermal conductivity, Energy Convers Manage, 43, 103, 10.1016/S0196-8904(01)00010-3

Sari, 2004, Form-stable paraffin/high density polyethylene composites as a solid-liquid phase change material for thermal energy storage: preparation and thermal properties, Energy Convers Manage, 45, 2033, 10.1016/j.enconman.2003.10.022

Zhang, 2006, Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings, Energy Build, 38, 1262, 10.1016/j.enbuild.2006.02.009

Zhou, 2008, Thermal analysis of a direct-gain room with shape-stabilized PCM plates, Renew Energy, 33, 1228, 10.1016/j.renene.2007.06.024

Athienitis, 1997, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage, Build Environ, 2, 3405

Banu, 1998, Evaluation of thermal storage as latent heat in phase change material wallboard by different scanning calorimetry and large scale thermal testing, Thermochim Acta, 317, 39, 10.1016/S0040-6031(98)00368-2

Feldman, 1996, DSC analysis for the evaluation of an energy storing wallboard, Thermochim Acta, 272, 243, 10.1016/0040-6031(95)02456-5

Scalat, 1996, Full scale thermal testing of latent heat storage in wallboard, Solar Energy Mater Solar Cells, 44, 49, 10.1016/0927-0248(96)00017-7

Lv, 2006, Eutectic mixture of capric acid and lauric acid applied in building wallboards for heat energy storage, Energy Build, 38, 708, 10.1016/j.enbuild.2005.10.006

Lv, 2006, Impact of phase change wall room on indoor thermal environment in winter, Energy Build, 38, 18, 10.1016/j.enbuild.2005.02.007

Ahmad, 2006, Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material, Energy Build, 38, 673, 10.1016/j.enbuild.2005.11.002

Pasupathy, 2008, Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management, Appl Therm Eng, 28, 556, 10.1016/j.applthermaleng.2007.04.016

Kuznik, 2008, Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation, Energy Build, 40, 148, 10.1016/j.enbuild.2007.01.022

Kuznik, 2009, Experimental investigation of wallboard containing phase change material: data for validation of numerical modeling, Energy Build, 41, 561, 10.1016/j.enbuild.2008.11.022

Lai, 2010, Heat transfer and thermal storage behaviour of gypsum boards incorporating micro-encapsulated PCM, Energy Build, 42, 1259, 10.1016/j.enbuild.2010.02.018

Gideon, 2011, Test of prototype PCM ‘sails’ for office cooling, Appl Therm Eng, 31, 717, 10.1016/j.applthermaleng.2010.10.008

Hasse, 2011, Realization, test and modelling of honeycomb wallboards containing a phase change material, Energy Build, 43, 232, 10.1016/j.enbuild.2010.09.017

Lee, 2000, Control aspects of latent heat storage and recovery in concrete, Solar Energy Mater Solar Cells, 62, 217, 10.1016/S0927-0248(99)00128-2

Neeper, 2000, Thermal dynamics of wallboard with latent heat storage, Solar Energy, 68, 393, 10.1016/S0038-092X(00)00012-8

Kuznik, 2011, In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard, Renew Energy, 36, 1458, 10.1016/j.renene.2010.11.008

Hawes, 1990, Latent heat storage in concrete II, Solar Energy Mater, 21, 61, 10.1016/0165-1633(90)90043-Z

Hawes, 1992, Absorption of phase change materials in concrete, Solar Energy Mater Solar Cells, 27, 91, 10.1016/0927-0248(92)90112-3

Bentz, 2007, Potential application of phase change materials in concrete technology, Cem Concr Compos, 29, 527, 10.1016/j.cemconcomp.2007.04.007

Baetens, 2010, Phase change materials for building applications: a state-of-the-art review, Energy Build, 42, 1361, 10.1016/j.enbuild.2010.03.026

Xu, 2005, Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings, Energy Build, 37, 1084, 10.1016/j.enbuild.2004.12.016

Pasupathy, 2008, Effect of double layer phase change material in building roof for year round thermal management, Energy Build, 40, 193, 10.1016/j.enbuild.2007.02.016

Mehling Harald. Strategic project “Innovative PCM-Technology”—results and future perspectives, 8th expert meeting and work shop, Kizkalesi, Turkey, April 18–24; 2004.

Saman WY, Belusko M. Roof integrated unglazed transpired solar air heater. In: Lee T. editor. Proceedings of the 1997 Australian and New Zealand Solar Energy Society. Paper 66, Canberra, Australia; 1997.

Kondo T, Iwamoto T. Research on using the PCM for ceiling board. IEA ECESIA, Annex 17, 3rd workshop, Tokyo, Japan; 2002.

Vakilaltojjar, 2001, Analysis and modeling of a phase change storage system for air conditioning applications, Appl Therm Eng, 21, 249, 10.1016/S1359-4311(00)00037-5

Saman, 2005, Thermal performance of PCM thermal storage unit for a roof integrated solar heating system, Solar Energy, 78, 341, 10.1016/j.solener.2004.08.017

Koschenz, 2004, Development of a thermally actived ceiling panel with PCM for application in lightweight and retrofitted buildings, Energy Build, 36, 567, 10.1016/j.enbuild.2004.01.029

Charunyakorn, 1991, Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts, Int J Heat Mass Transfer, 34, 819, 10.1016/0017-9310(91)90128-2

Hu, 2002, Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux, Int J Heat Mass Transfer, 45, 3163, 10.1016/S0017-9310(02)00034-0

Inaba, 2003, Natural convection heat transfer of microemulsion phase-change-material slurry in rectangular cavities heated from below and cooled from above, Int J Heat Mass Transfer, 46, 4427, 10.1016/S0017-9310(03)00289-8

Zeng, 2009, Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux, Appl Energy, 86, 2661, 10.1016/j.apenergy.2009.04.025

Zhang GH, Zhao CY. Thermal and rheological property characteristics of PCM microcapsule slurrie. In: 5th International renewable energy storage conference IRES 2010, Invited Keynote paper, Berlin, Germany; 2010.

Wang, 2009, Performance of cooled-ceiling operating with MPCM slurry, Energy Convers Manage, 50, 583, 10.1016/j.enconman.2008.10.021

Lin, 2007, Study of an electrical heating system with ductless air supply and shape-stabilized PCM for thermal storage, Energy Convers Manage, 48, 2016, 10.1016/j.enconman.2007.01.014

Lin, 2004, Modeling and simulation of under-floor electric heating system with shape-stabilized PCM plates, Build Environ, 39, 1427, 10.1016/j.buildenv.2004.04.005

Vakilatojjar, 2001, Analysis and modeling of a phase change storage system for air conditioning applications, Appl Therm Eng, 21, 249, 10.1016/S1359-4311(00)00037-5

Kang, 2003, Modeling and experimental study on an innovative passive cooling system – NVP system, Energy Build, 35, 417, 10.1016/S0378-7788(02)00141-X

Duffin, 1984, A passive wall design to minimize building temperature swing, Solar Energy, 33, 337, 10.1016/0038-092X(84)90163-4

Asan, 1998, Effects of wall’s thermophysical properties on time lag and decrement factor, Energy Build, 28, 159, 10.1016/S0378-7788(98)00007-3

Ulgen, 2002, Experimental and theoretical investigation of effects of wall’s thermophysical properties on time lag and decrement factor, Energy Build, 34, 273, 10.1016/S0378-7788(01)00087-1

Kontoleon, 2008, The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region, Renew Energy, 33, 1652, 10.1016/j.renene.2007.09.008

Kaşka, 2009, Theoretical and experimental investigation of total equivalent temperature difference (TETD) values for building walls and flat roofs in Turkey, Appl Energy, 86, 737, 10.1016/j.apenergy.2008.09.010

Kaşka, 2009, Experimental investigation for total equivalent temperature difference (TETD) values of building walls and flat roofs, Energy Convers Manage, 50, 2818, 10.1016/j.enconman.2009.06.027

Antonopoulos, 2000, Envelope and indoor thermal capacitance of buildings, Appl Therm Eng, 19, 743, 10.1016/S1359-4311(98)00080-5

Antonopoulos, 2000, Thermal parameter components of building envelop, Appl Therm Eng, 20, 1193, 10.1016/S1359-4311(99)00090-3

Feuermann, 1989, Measurement of envelope thermal transmittances in multifamily buildings, Energy Build, 13, 139, 10.1016/0378-7788(89)90005-4

Peippo, 1991, A multicomponent PCM wall optimized for passive solar heating, Energy Build, 17, 259, 10.1016/0378-7788(91)90009-R

Charach C, Zarmi Y, Zemel A. Simple method for assessing the thermal performance of PCM panels. In: Proceedings of ISES solar world congress, Hamburg; 1987. p. 1212–6.

Drake JB. A study of the optimal transition temperature of PCM wallboard for solar energy storage. Report ORNL/TM-10210, Oak Ridge National Laboratory; 1987.

Kuznik, 2008, Optimization of a phase change material wallboard for building use, Appl Therm Eng, 28, 1291, 10.1016/j.applthermaleng.2007.10.012

Xiao, 2009, Analytical optimization of interior PCM for energy storage in a lightweight passive solar room, Appl Energy, 86, 2013, 10.1016/j.apenergy.2008.12.011

Onishi, 2001, Numerical study on a low energy architecture based upon distributed heat storage system, Renew Energy, 22, 61, 10.1016/S0960-1481(00)00049-5

Heim, 2004, Numerical modelling and thermal simulation of PCM-gypsum composites with ESP-r, Energy Build, 36, 795, 10.1016/j.enbuild.2004.01.004

Carbonari, 2006, Numerical and experimental analyses of PCM containing sandwich panels for prefabricated walls, Energy Build, 38, 472, 10.1016/j.enbuild.2005.08.007

Grassi, 2006, A statistical approach for the evaluation of the thermal behavior of dry assembled PCM containing walls, Build Environ, 41, 448, 10.1016/j.buildenv.2005.02.005

Darkwa, 2006, Simulation of phase change drywalls in a passive solar building, Appl Therm Eng, 26, 853, 10.1016/j.applthermaleng.2005.10.007

Zhang, 2008, Thermal storage and nonlinear heat transfer characteristics of PCM wallboard, Energy Build, 40, 1771, 10.1016/j.enbuild.2008.03.005

Kuznik, 2010, Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM, Energy Build, 42, 1004, 10.1016/j.enbuild.2010.01.012

Borreguero, 2011, Thermal testing and numerical simulation of gypsum wallboards incorporated with different PCMs content, Appl Energy, 88, 930, 10.1016/j.apenergy.2010.08.014