Tổng quan về Nghiên cứu và Phát triển Kính Kim loại Khối Dựa trên Titan

Metals - Tập 6 Số 11 - Trang 264
Pan Gong1, Lei Deng1, Junsong Jin1, Sibo Wang1, Xinyun Wang1, Kefu Yao2
1State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Tóm tắt

Kính kim loại khối dựa trên titan (Ti-based bulk metallic glasses - BMGs) rất hấp dẫn cho các ứng dụng do những đặc tính vượt trội của chúng như độ bền riêng cao và khả năng chống ăn mòn tốt. Trong bài báo này, chúng tôi sẽ tóm tắt tình hình hiện tại của nghiên cứu và phát triển kính kim loại khối dựa trên titan. Sự chú ý sẽ được đặt vào khả năng hình thành kính, các tính chất cơ học, khả năng chống ăn mòn và tương thích sinh học.

Từ khóa


Tài liệu tham khảo

Klement, 1960, Non-crystalline structure in solidified gold-silicon alloys, Nature, 187, 869, 10.1038/187869b0

Chen, 1974, Thermodynamic considerations on formation and stability of metallic glasses, Acta Metall., 22, 1505, 10.1016/0001-6160(74)90112-6

Inoue, 1996, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching, Mater. Trans. JIM, 37, 181, 10.2320/matertrans1989.37.181

Nishiyama, 1997, Flux treated Pd–Cu–Ni–P amorphous alloy having low critical cooling rate, Mater. Trans. JIM, 38, 464, 10.2320/matertrans1989.38.464

Yokoyama, 2007, Production of Zr55Cu30Ni5Al10 glassy alloy rod of 30 mm in diameter by a cap-cast technique, Mater. Trans., 48, 3190, 10.2320/matertrans.MRP2007164

Inoue, 1993, Bulky La–Al-TM (TM = Transition Metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method, Mater. Trans., 34, 351, 10.2320/matertrans1989.34.351

Inoue, 1992, Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method, Mater. Trans., 33, 937, 10.2320/matertrans1989.33.937

Nishiyama, 2012, The world’s biggest glassy alloy ever made, Intermetallics, 30, 19, 10.1016/j.intermet.2012.03.020

Peker, 1993, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5, Appl. Phys. Lett., 63, 2342, 10.1063/1.110520

He, 1996, Bulk glass formation in the Pd–Ni–P system, Appl. Phys. Lett., 69, 1861, 10.1063/1.117458

Sun, 2009, Zr–Cu–Ni–Al bulk metallic glasses with superior glass-forming ability, Acta Mater., 57, 1290, 10.1016/j.actamat.2008.11.007

Zhang, 2009, Ni-free Zr–Fe–Al–Cu bulk metallic glasses with high glass-forming ability, Scr. Mater., 61, 241, 10.1016/j.scriptamat.2009.03.056

Hua, 2011, Ni- and Cu-free Zr-Al-Co-Ag bulk metallic glasses with superior glass-forming ability, J. Mater. Res., 26, 539, 10.1557/jmr.2010.65

Huang, 2011, Unique properties of CuZrAl bulk metallic glasses induced by microalloying, J. Appl. Phys., 110, 123522, 10.1063/1.3672449

Jia, 2006, A new Cu–Hf–Al ternary bulk metallic glass with high glass-forming ability and ductility, Scr. Mater., 54, 2165, 10.1016/j.scriptamat.2006.02.042

Wang, 2007, Cluster line criterion and Cu–Zr–Al bulk metallic glass formation, Mater. Sci. Eng. A, 449–451, 18, 10.1016/j.msea.2006.02.271

Zheng, 2006, Mg–Cu–(Y, Nd) pseudo-ternary bulk metallic glasses: The effects oof Nd on glass-forming ability and plasticity, Scr. Mater., 55, 541, 10.1016/j.scriptamat.2006.05.029

Park, 2001, Effect of Ag addition on the glass-forming ability of Mg–Cu–Y metallic glass alloys, J. Non-Cryst. Solids, 279, 154, 10.1016/S0022-3093(00)00412-9

Pang, 2002, Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance, Acta Mater., 50, 489, 10.1016/S1359-6454(01)00366-4

Li, 2012, Formation of bulk magnetic ternary Fe80P13C7 glassy alloy, Intermetallics, 26, 62, 10.1016/j.intermet.2012.03.045

Na, 2014, Compositional landscape for glass formation in metal alloys, PNAS, 111, 9031, 10.1073/pnas.1407780111

Zeng, 2007, Formation of a Ni–based glassy alloy in centimeter scale, Mater. Trans., 48, 1355, 10.2320/matertrans.MF200627

Wang, 2011, Compressibility and hardness of Co-based bulk metallic glass: A combined experimental and density functional theory study, Appl. Phys. Lett., 99, 151911, 10.1063/1.3647775

Man, 2010, Enhancement of glass-forming ability of CoFeBSiNb bulk glassy alloys with excellent soft-magnetic properties and superhigh strength, Intermetallics, 18, 1876, 10.1016/j.intermet.2010.02.047

Liang, 2008, An Er-based bulk metallic glass with high thermal stability and excellent magnetocaloric properties, Intermetallics, 16, 198, 10.1016/j.intermet.2007.09.005

Zhang, 2009, Effect of similar elements on improving glass-forming ability of La-Ce-based alloys, J. Alloy. Compd., 483, 60, 10.1016/j.jallcom.2008.07.224

Zhang, 2003, Bulk glassy alloys with low liquidus temperature in Pt-Cu-P system, Mater. Trans., 44, 1143, 10.2320/matertrans.44.1143

Zhang, 2009, New Au-based bulk glassy alloys with ultralow glass transition temperature, Scr. Mater., 61, 744, 10.1016/j.scriptamat.2009.06.020

Jiang, 2014, Low-density high-strength bulk metallic glasses and their composites: A review, Adv. Eng. Mater., 17, 761, 10.1002/adem.201400252

Wang, 2004, Bulk metallic glasses, Mater. Sci. Eng. R., 44, 45, 10.1016/j.mser.2004.03.001

Tanner, 1977, Physical properties of Ti50Be40Zr10 glass, Scr. Mater., 11, 783

Holloway, 1987, Amoprhous Ti–Si alloy formed by interdiffusion of amorphous Si and crystalline Ti multilayers, J. Appl. Phys., 61, 1359, 10.1063/1.338114

Sharma, 1994, Impurity-difussion investigations in amorphous Ti60Ni40, Phys. Rev. B, 49, 6655, 10.1103/PhysRevB.49.6655

Tanner, 1979, Metallic glass formation and properties in Zr and Ti alloyed with Be-I the binary Zr–Be and Ti–Be systems, Acta Metall., 27, 1727, 10.1016/0001-6160(79)90087-7

Inoue, 1980, Superconductivity of ductile Ti–Nb–Si amorphous alloys, J. Appl. Phys., 51, 5475, 10.1063/1.327506

Lu, 2009, Optimal glass-forming composition and its correlation with eutectic reaction in the Ti–Ni–Al ternary system, J. Alloy. Compd., 467, 261, 10.1016/j.jallcom.2007.12.050

Amiya, 1994, Mechanical strength and thermal stability of Ti-based amorphous alloys with large glass—forming ability, Mater. Sci. Eng. A, 179, 692, 10.1016/0921-5093(94)90294-1

Peker, A., and Johnson, W.L. (1994). Beryllium bearing amorphous metallic alloys formed by low cooling rate. (No. 5288344 A 2nd), U.S. Patent.

Zhang, 1998, Thermal and mechanical properties of Ti–Ni–Cu–Sn amorphous alloys with a wide supercooled liquid region before crystallization, Mater. Trans. JIM, 39, 1001, 10.2320/matertrans1989.39.1001

Wu, 2008, Bulk metallic glass formation in a ternary Ti–Cu–Ni alloy system, J. Alloy. Compd., 452, 268, 10.1016/j.jallcom.2006.11.010

Wang, 2008, Ti (Zr)–Cu–Ni bulk metallic glasses with optimal glass-forming ability and their compressive properties, Metall. Mater. Trans. A, 39, 2990, 10.1007/s11661-008-9647-6

Wiest, 2008, Zr-Ti-based Be-bearing glasses optimized for high thermal stability and thermoplastic formability, Acta Mater., 56, 2625, 10.1016/j.actamat.2008.02.001

Nagahama, 2003, Crystallization of Ti36Zr24Be40 metallic glass, Scr. Mater., 49, 729, 10.1016/S1359-6462(03)00337-3

He, 2004, Glass-forming ability and crystallization behavior of Ti–Cu–Ni–Sn-M (M = Zr, Mo, and Ta) metallic glass, J. Appl. Phys., 95, 1816, 10.1063/1.1643776

Xie, 2010, A Ti-based bulk glassy alloy with high strength and good glass-forming ability, Intermetallics, 18, 1837, 10.1016/j.intermet.2010.02.036

Zhu, 2007, New TiZrCuPd quaternary bulk glassy alloys with potential of biomedical applications, Mater. Trans., 48, 2445, 10.2320/matertrans.MRA2007086

Zhu, 2008, Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm, Intermetallics, 16, 1031, 10.1016/j.intermet.2008.05.006

Qin, 2007, Fabrication and corrosion property of novel Ti-based bulk glassy alloys without Ni, Mater. Trans., 48, 515, 10.2320/matertrans.48.515

Zhu, 2007, Glass-forming ability and thermal stability of Ti–Zr–Cu–Pd–Si bulk glassy alloys for biomedical applications, Mater. Trans., 48, 163, 10.2320/matertrans.48.163

Qin, 2008, Distinct plastic strain of Ni-free Ti–Zr–Cu–Pd–Nb bulk metallic glasses with potential for biomedical applications, Intermetallics, 16, 1026, 10.1016/j.intermet.2008.05.004

Kim, 2004, Amorphous and icosahedral phases in Ti–Zr–Cu–Ni–Be alloys, Mater. Sci. Eng. A, 375–377, 749, 10.1016/j.msea.2003.10.116

Guo, 2005, Ductile titanium-based glassy alloy ingots, Appl. Phys. Lett., 86, 091907, 10.1063/1.1872214

Park, 2011, Ductile Ti-based bulk metallic glasses with high specific strength, Metall. Mater. Trans. A, 42, 1456, 10.1007/s11661-010-0416-y

Huang, 2007, A new Ti–Zr–Hf–Cu–Ni–Si–Sn bulk amorphous alloy with high glass-forming ability, J. Alloy. Compd., 427, 171, 10.1016/j.jallcom.2006.03.006

Liu, 2016, Formation and properties of Ti-based Ti–Zr–Cu–Fe–Sn–Si bulk metallic glasses with different (Ti + Zr)/Cu ratios for biomedical application, Intermetallics, 72, 36, 10.1016/j.intermet.2016.01.007

Pang, 2015, New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications, J. Alloy. Compd., 625, 323, 10.1016/j.jallcom.2014.07.021

Liu, 2016, Ti–Cu–Zr–Fe–Sn–Si–Sc bulk metallic glasses with good mechanical properties for biomedical applications, J. Alloy. Compd., 679, 341, 10.1016/j.jallcom.2016.03.224

Lou, 2011, 73 mm-diameter bulk metallic glass rod by copper mold casting, Appl. Phys. Lett., 99, 051910, 10.1063/1.3621862

Shen, 2005, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy, Appl. Phys. Lett., 86, 151907, 10.1063/1.1897426

Zheng, 2007, High glass-forming ability correlated with fragility of Mg–Cu(Ag)-Gd alloys, J. Appl. Phys., 102, 113519, 10.1063/1.2821755

Zeng, 2009, Ni–rich bulk metallic glasses with high glass-forming ability and good metallic properties, Mater. Trans., 50, 2441, 10.2320/matertrans.MRA2008453

Zhou, 2012, Foormation and thermal stability of Cu-based metallic glasses with high glass-forming ability, Metall Mater. Trans. A, 43, 2592, 10.1007/s11661-011-0988-1

Zhang, 2011, Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa, Chin. Sci. Bull., 56, 3972, 10.1007/s11434-011-4765-8

Schroers, 2004, Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu-P system, Appl. Phys. Lett., 84, 3666, 10.1063/1.1738945

Guo, 2009, Glass-forming ability and properties of new AU-based glassy alloys with low Au concentrations, Mater. Trans., 50, 1290, 10.2320/matertrans.ME200809

Laws, 2012, Synthesis of Ag-based bulk metallic glass in the Ag-Mg-Ca-[Cu] alloy system, J. Alloy. Compd., 513, 10, 10.1016/j.jallcom.2011.10.097

Senkov, 2008, Development and characterization of low-density Ca-based bulk metallic glasses: an overview, Metall. Mater. Trans. A, 39, 1888, 10.1007/s11661-007-9334-z

Wu, 2016, Designing aluminum-rich bulk metallic glasses via electronic-structure-guided microalloying, Acta Mater., 108, 143, 10.1016/j.actamat.2016.02.012

Xu, 2015, Corrosion resistant Cr-based bulk metallic glasses with high strength and hardness, J. Non-Cryst. Solids, 410, 20, 10.1016/j.jnoncrysol.2014.12.006

Jiang, 2007, La-based bulk metallic glasses with critical diameter up to 30 mm, Acta Mater., 55, 4409, 10.1016/j.actamat.2007.04.021

Zhou, 2015, Remarkable effect of Ce base element purity upon glass-forming ability in Ce-Ga–Cu bulk metallic glasses, Intermetallics, 56, 56, 10.1016/j.intermet.2014.09.003

Tang, 2010, TiZr-base bulk metallic glass with over 50 mm in diameter, J. Mater. Sci. Tech., 26, 481, 10.1016/S1005-0302(10)60077-1

Zhang, 2015, Compressive plastic metallic glass with exceptional glass-forming ability in the Ti–Zr–Cu–Fe–Be alloy system, J. Alloy. Compd., 638, 349, 10.1016/j.jallcom.2015.03.120

Inoue, 1993, Glass-forming ability of alloys, J. Non-Cryst. Solids, 156–158, 473, 10.1016/0022-3093(93)90003-G

Turnbull, 1969, Under what conditions can a glass be formed?, Contemp. Phys., 10, 473, 10.1080/00107516908204405

Lu, 2002, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater., 50, 3501, 10.1016/S1359-6454(02)00166-0

Guo, 2010, Identify the best glass-forming ability criterion, Intermetallics, 18, 883, 10.1016/j.intermet.2009.12.025

Zhang, 2009, A criterion for evaluating glass-forming ability of alloys, J. Appl. Phys., 106, 094902, 10.1063/1.3255952

Duan, 2008, Lightweight Ti-based bulk metallic glasses excluding late transition metals, Scr. Mater., 58, 465, 10.1016/j.scriptamat.2007.10.040

Hao, 2010, Ti–Zr–Be ternary bulk metallic glasses correlated with binary eutectic clusters, Mater. Sci. Eng. A, 527, 6248, 10.1016/j.msea.2010.06.078

Zhang, 2010, Glass-forming ability and competitive crystalline phases for lightweight Ti–Be-based alloys, Metall. Mater. Trans. A, 41, 1670, 10.1007/s11661-009-0122-9

Men, 2005, New Ti-based bulk metallic glasses with significant plasticity, Mater. Trans., 46, 2218, 10.2320/matertrans.46.2218

Wang, 2013, Ti-based glassy alloys in Ti–Cu–Ni–Sn system, Sci. China Phys. Mech. Astron., 56, 1419, 10.1007/s11433-013-5104-7

Kim, 2004, A development of Ti-based buulk metallic glass, Mater. Sci. Eng. A, 375–377, 127, 10.1016/j.msea.2003.10.115

Liu, 2008, Optimized compositions of Ti-(Cu, Ni)–Sn alloy for metallic glass formation and their correlation with eutectic reaction, Acta Metall. Sin., 44, 1424

Zhu, 2007, A new Ti-based bulk glassy alloy with potential for biomedical application, Mater. Sci. Eng. A, 459, 233, 10.1016/j.msea.2007.01.044

Gong, 2012, Effects of Fe addition on glass-forming ability and mechanical properties of Ti–Zr–Be bulk metallic glass, J. Alloy Compd., 536, 26, 10.1016/j.jallcom.2012.04.048

Gong, 2013, A new centimeter-sized Ti-based quaternary bulk metallic glass with good mechanical properties, Adv. Eng. Mater., 15, 691, 10.1002/adem.201200391

Gong, 2013, Ti–Zr–Be–Fe quaternary bulk metallic glasses designed by Fe alloying, Sci. China Phys. Mech. Astron., 56, 2090, 10.1007/s11433-013-5271-6

Gong, 2012, Lightweight Ti–Zr–Be–Al bulk metallic glasses with improved glass-forming ability and compressive plasticity, J. Non-Cryst. Solids, 358, 2620, 10.1016/j.jnoncrysol.2012.06.011

Zhao, 2014, A centimeter-sized quaternary Ti–Zr–Be-Ag bulk metallic glass, Adv. Mater. Sci. Eng., 6453, 163

Zhao, 2015, New centimeter-sized quaternary Ti–Zr–Be–Cu bulk metallic glasses with large glass-forming ability, J. Alloy. Compd., 647, 533, 10.1016/j.jallcom.2015.05.214

Zhao, 2015, Quaternary Ti–Zr–Be–Ni bulk metallic glasses with large glass-forming ability, Mater. Des., 85, 564, 10.1016/j.matdes.2015.07.032

Zhao, 2016, Centimeter-sized quaternary Ti-based bulk metallic glasses with high Ti content of 50 atom %, Adv. Eng. Mater., 18, 231, 10.1002/adem.201500165

Huang, 2008, Formation, thermal stability and mechanical properties of Ti42.5Zr7.5Cu40Ni5Sn5 bulk metallic glass, Sci. China Phys. Mech. Astron., 51, 372, 10.1007/s11433-008-0049-y

Zhang, 1999, Preparation of Ti–Cu–Ni–Si–B amorphous alloys with a large supercooled liquid region, Mater. Trans. JIM, 40, 301, 10.2320/matertrans1989.40.301

Khalifa, 2011, Thermal stability and crystallization phenomena of low cost Ti-based bulk metallic glass, J. Non-Cryst. Solids, 357, 3393, 10.1016/j.jnoncrysol.2009.08.005

Li, 2014, Glass forming ability, thermodynamics and mechanical properties of novel Ti–Cu–Ni–Zr–Hf bulk metallic glasses, Mater. Des., 53, 145, 10.1016/j.matdes.2013.06.060

Ma, 2004, New Ti-based bulk glassy alloys with high glass-forming ability and superior mechanical properties, Mater. Trans., 45, 3223, 10.2320/matertrans.45.3223

Zhang, 2013, A Ti36.2Zr30.3Cu8.3Fe4Be21.2 bulk metallic glass with exceptional glass-forming ability and remarkable compressive plasticity, J. Alloy. Compd., 562, 205, 10.1016/j.jallcom.2013.02.047

Gong, 2013, A Ti–Zr–Be–Fe–Cu bulk metallic glass with superior glass-forming ability and high specific strength, Intermetallics, 43, 177, 10.1016/j.intermet.2013.08.003

Gong, 2012, Centimeter-sized Ti-based bulk metallic glass with high specific strength, Prog. Nat. Sci. Mater. Int., 22, 401, 10.1016/j.pnsc.2012.10.007

Zhang, 2001, Ti-based amorphous alloys with a large supercooled liquid region, Mater. Sci. Eng. A, 304–306, 771, 10.1016/S0921-5093(00)01592-6

Yin, 2010, Formation of Ti–Zr–Cu–Ni–Sn–Si bulk metallic glasses with good plasticity, J. Alloy. Compd., 504, S10, 10.1016/j.jallcom.2010.04.008

Kim, 2003, Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength, J. Non-Cryst. Solids, 325, 242, 10.1016/S0022-3093(03)00327-2

Hao, 2006, Bulk metallic glass formation of Ti-based alloys from low purity elements, Mater. Lett., 60, 1256, 10.1016/j.matlet.2005.11.011

Xia, 2005, Thermal stability and glass-forming ability of new Ti-based bulk metallic glasses, J. Non-Cryst. Solids, 351, 3747, 10.1016/j.jnoncrysol.2005.09.033

Ma, 2004, Formatiion of new Ti-based metallic glassy alloys, Mater. Trans., 45, 1802, 10.2320/matertrans.45.1802

Xia, 2005, Preparation and crystallization of Ti53Cu27Ni12Zr3Al7Si3B1 bulk metallic glass with wide supercooled liquid region, Mater. Sci. Eng. A, 390, 372, 10.1016/j.msea.2004.08.019

Wang, 2015, Novel Ti-based bulk metallic glasses with superior plastic yielding strength and corrosion resistance, Mater. Sci. Eng. A, 642, 297, 10.1016/j.msea.2015.05.060

Murty, 1992, Solid state amorphization in binary Ti–Ni, Ti–Cu and ternary Ti–Ni–Cu system by mechanical alloying, Mater. Sci. Eng. A, 149, 231, 10.1016/0921-5093(92)90384-D

Nash, 1998, Thermodynamic calculation of phase equilibria in the Ti–Co and Ni–Sn systems, J. Mater. Sci., 33, 4929, 10.1023/A:1004478101233

Zhang, 1989, Nonequilibrium crystalline and amorphous Ti–Pd alloys produced by vapor quenching, Mater. Trans. JIM, 30, 733, 10.2320/matertrans1989.30.733

Inoue, 2000, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48, 279, 10.1016/S1359-6454(99)00300-6

Takeuchi, 2005, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46, 2817, 10.2320/matertrans.46.2817

Li, 2007, Influence of similar atom substitution on glass formation in (La-Ce)–Al–Co bulk metallic glasses, Acta Mater., 55, 3719, 10.1016/j.actamat.2007.02.026

Wang, 2013, Effect of cobalt microalloying on the glass-forming ability of Ti–Cu–Pd–Zr metallic glass, J. Non-Cryst. Solids, 379, 155, 10.1016/j.jnoncrysol.2013.08.001

Xu, 2011, Glass forming ability and crystallization of Zr-Cu-Ag-Al-Be bulk metallic glasses, J. Alloy. Compd., 509, 9034, 10.1016/j.jallcom.2011.02.107

Xiao, 2004, Influence of beryllium on the thermal stability and glass-forming ability of Zr–Al–Ni–Cu bulk amorphous alloys, J. Alloy. Compd., 376, 145, 10.1016/j.jallcom.2004.01.014

Inoue, 2001, High-strength Cu-based bulk glassy alloys in Cu–Zr-Ti–Be system, Mater. Trans., 42, 1800, 10.2320/matertrans.42.1800

Park, 2005, Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses, Scr. Mater., 53, 1, 10.1016/j.scriptamat.2005.03.024

Wang, 2007, Roles of minor additions in formation and properties of bulk metallic glasses, Prog. Mater. Sci., 52, 540, 10.1016/j.pmatsci.2006.07.003

Lu, 2004, Role of minor alloying additions in formation of bulk metallic glasses: A review, J. Mater. Sci., 39, 3965, 10.1023/B:JMSC.0000031478.73621.64

Chen, 2010, Role of alloying additions in glass formation and properties of bulk metallic glasses, Materials, 3, 5320, 10.3390/ma3125320

Cao, 2016, Effects of nitrogen on the glass formation and mechanical properties of a Ti-based metallic glass, Acta Metall. Sin. Eng. Lett., 29, 173, 10.1007/s40195-016-0374-5

Wang, 2015, Effects of Zr and Si on the glass-forming ability and compressive properties of Ti–Cu–Co–Sn alloys, Metall. Mater. Trans. A, 46, 2381, 10.1007/s11661-014-2484-x

Hao, 2009, Role of yttrium in glass formation in Ti-based bulk metallic glasses, Rare Met., 28, 68, 10.1007/s12598-009-0013-7

Mei, 2008, Effects of Nb on the formation of icosahedral quasicrystalline phase in Ti-rich Ti–Zr–Ni–Cu–Be glassy forming alloys, J. Non-Cryst. Solids, 354, 3332, 10.1016/j.jnoncrysol.2008.02.001

Li, 2014, Effects of Nb addition on glass-forming ability, thermal stability and mechanical properties of Ti-based bulk metallic glasses, Rare Met. Matter. Eng., 43, 1835, 10.1016/S1875-5372(14)60141-7

Xie, 2010, Preparation of (Ti0.45Cu0.378Zr0.10Ni0.072)100−xSnx bulk metallic glasses, J. Alloy. Compd., 504, S22, 10.1016/j.jallcom.2010.02.199

Liu, 2002, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy, Intermetallics, 10, 1105, 10.1016/S0966-9795(02)00131-0

Kundig, 2002, Influence of low oxygen contents and alloy refinement on the glass-forming ability of Zr52.5Cu17.9Ni14.6Al10Ti5, Mater. Trans., 43, 3206, 10.2320/matertrans.43.3206

Lu, 2003, Role of yttrium in glass formation of Fe-based bulk metallic glasses, Appl. Phys. Lett., 83, 2581, 10.1063/1.1614833

Yan, 2006, Enhanced glass-forming ability of a Zr-based bulk metallic glass with yttrium doping, J. Non-Cryst. Solids, 352, 3109, 10.1016/j.jnoncrysol.2006.02.098

Egami, 1984, Atomic size effect on the formability of metallic glasses, J. Non-Cryst. Solids, 64, 113, 10.1016/0022-3093(84)90210-2

Senkov, 2001, Effect of the atomic size distribution on glass-forming abilty of amorphous metallic alloys, Mater. Res. Bull., 36, 2183, 10.1016/S0025-5408(01)00715-2

Yun, 2014, Effects of atomic size difference and heat of mixing parameters on the local structure of a model metallic glass system, Met. Mater. Int., 20, 105, 10.1007/s12540-013-6013-z

Inoue, 2006, Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K, Appl. Phys. Lett., 88, 011911, 10.1063/1.2159420

Ma, 2008, Electronegativity difference as a factor for evaluating the thermal stability of Al-rich metallic glasses, Philos. Mag. Lett., 88, 917, 10.1080/09500830802526596

Jiao, 2011, Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses, Intermetallics, 19, 1502, 10.1016/j.intermet.2011.05.020

Schuh, 2007, Mechanical behavior of amorphous alloys, Acta Mater., 55, 4067, 10.1016/j.actamat.2007.01.052

Trexler, 2010, Mechanical properties of bulk metallic glasses, Porg. Mater. Sci., 55, 759, 10.1016/j.pmatsci.2010.04.002

Kruzic, J.J. (2016). Bulk metallic glasses as structural materials: A review. Adv. Eng. Mater.

Inoue, 2002, Recent progress in bulk glassy alloys, Mater. Trans., 43, 1892, 10.2320/matertrans.43.1892

Wang, 2014, A new TiCuHfSi bulk metallic glass with potential for biomedical applications, Mater. Des., 54, 252, 10.1016/j.matdes.2013.08.075

Yao, 2007, Mechanical properties of Pd–Cu–Si bulk metallic glass, Intermetallics, 15, 639, 10.1016/j.intermet.2007.03.005

Yang, 2009, Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength, Scr. Mater., 61, 423, 10.1016/j.scriptamat.2009.04.035

Salimon, 2004, Bulk metallic glasses: What are they good for?, Mater. Sci. Eng. A, 375–377, 385, 10.1016/j.msea.2003.10.167

Poon, 2008, Poisson’s ratio and intrinsic plasticity of metallic glasses, Appl. Phys. Lett., 92, 261902, 10.1063/1.2952827

Wei, 2013, Towards more uniform deformation in metallic glasses: The role of Poisson’s ratio, Mater. Sci. Eng. A, 560, 510, 10.1016/j.msea.2012.09.096

Pan, 2007, Fracture instability in brittle Mg-based bulk metallic glasses, J. Alloy. Compd., 438, 145, 10.1016/j.jallcom.2006.08.014

Guo, 2014, Fe-based bulk metallic glasses: Brittle or ductile?, Appl. Phys. Lett., 105, 161901, 10.1063/1.4899124

Xi, 2005, Fracture of brittle metallic glasses: Brittleness or plasticity, Phys. Res. Lett., 94, 125510, 10.1103/PhysRevLett.94.125510

Hofmann, 2008, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 451, 1085, 10.1038/nature06598

Hofmann, 2008, Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility, PNAS, 105, 20136, 10.1073/pnas.0809000106

Jeon, 2015, Effects of effective dendrite size on tensile deformation behavior in Ti-based dendrite-containing amorphous matrix composites modified form Ti–6Al–4V alloy, Metall. Mater. Trans. A, 46, 235, 10.1007/s11661-014-2531-7

Huang, 2007, Bulk metallic glasses: Smaller is softer, Appl. Phys. Lett., 90, 081919, 10.1063/1.2696502

Lee, 2007, Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass, Appl. Phys. Lett., 91, 161913, 10.1063/1.2800313

Wu, 2008, Size-dependent “malleable-to-brittle” transition in a bulk metallic glass, Appl. Phys. Lett., 93, 061908, 10.1063/1.2969784

Yang, 2012, Size effect on stability of shear-band propagation in bulk metallic glasses: An overview, J. Mater. Sci., 47, 55, 10.1007/s10853-011-5915-8

Wu, 2009, Effect of sample size on ductility of metallic glass, Philos. Mag. Lett., 89, 178, 10.1080/09500830902720917

Wang, 2014, Size effect on flow behavior of a Zr55Al10Ni5Cu30 bulk metallic glass in supercooled liquid state, Metall. Mater. Trans. A, 45, 3505, 10.1007/s11661-014-2299-9

Yao, 2015, A size-depenedent constitutive model of bulk metallic glasses in the supercooled liquid reion, Sci. Rep., 5, 8083, 10.1038/srep08083

Jiang, 2006, Ductility of a Zr-based bulk-metallic glass with different specimen’s geometries, Mater. Lett., 60, 3537, 10.1016/j.matlet.2006.03.047

Huang, 2008, Enhanced strength and plasticity of a Ti-based metallic glass at cryogenic temperatures, Mater. Sci. Eng. A, 498, 203, 10.1016/j.msea.2008.08.010

Yu, 2008, Poisson’s ratio and plasticity in CuZrAl bulk metallic glass, Mater. Sci. Eng. A, 485, 1, 10.1016/j.msea.2007.07.062

Lewandowski, 2005, Intrisic plasticity or brittleness of metallic glass, Philos. Mag. Lett., 85, 77, 10.1080/09500830500080474

Qiao, 2016, Metallic glass matrix composites, Mater. Sci. Eng. R, 100, 1, 10.1016/j.mser.2015.12.001

Schramm, 2010, Metallic-glass-matrix composite structure with benchmark mechanical performance, Appl. Phys. Lett., 97, 241910, 10.1063/1.3521412

He, 2002, Enhanced plasticity in a Ti-based bulk metallic glass-forming alloy by in situ formation of a composite microstructure, J. Mater. Res., 17, 3015, 10.1557/JMR.2002.0439

Tang, 2012, Ti-based amorphous composites with quantitatively controlled in-situ formation of dendrites, Acta Metall. Sin., 48, 861, 10.3724/SP.J.1037.2012.00198

Cui, 2015, Microstructure evolution of a Ti-based bulk metallic glass composite during deformation, J. Mater. Eng. Perform., 24, 748, 10.1007/s11665-014-1320-1

Zhang, 2013, Strong work-hardening behavior in a Ti-based bulk metallic glass composite, Scr. Mater., 69, 73, 10.1016/j.scriptamat.2013.03.004

Yang, 2016, Mechanical behavior and wear performance of a Ti-based bulk metallic glass composite containing dendritic and intermetallic phases, Mater. Sci. Eng. A, 672, 135, 10.1016/j.msea.2016.07.004

Park, 2010, Tailoring of in situ Ti-based bulk glassy matrix composites with high mechanical performance, Intermetallics, 18, 1908, 10.1016/j.intermet.2010.02.029

Khalifa, 2009, High strength (Ti58Ni28Cu8Si4Sn2)100−xMox nanoeutectic matrix-β-Ti dendrite, BMG-derived composites with enhanced plasticity and corrosion resistance, Adv. Eng. Mater., 11, 885, 10.1002/adem.200900148

Ma, 2015, Strong work-hardening behavior induced by the solid solution strengthening of dendrites in TiZr-based bulk metallic glass matrix composites, J. Alloy. Compd., 624, 9, 10.1016/j.jallcom.2014.11.099

Zhang, 2011, Synthesis of plastic lightweight Ti-based metallic-glass-matrix composites by Bridgman solidification, Acta Metall. Sin., 47, 236

Wang, 2014, The role of the interface in a Ti-based metallic glass matrix composite with in situ dendrite reinforcement, Surf. Interface Anal., 46, 293, 10.1002/sia.5413

Wang, 2013, Mechanical behaviors of diamond reinforced Ti-based bulk metallic glassy composites prepared by spark plasma sintering, J. Alloy. Compd., 560, 841

Qiao, 2013, In-situ dendrite/metallic glass matrix composites: A review, J. Mater. Sci. Tech., 29, 685, 10.1016/j.jmst.2013.05.020

Jun, 2012, Ductility enhancement of a Ti-based bulk metallic glass through annealing treatment below the glass transition temperature, Intermetallics, 20, 47, 10.1016/j.intermet.2011.08.010

Cao, 2010, Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass, Acta Mater., 58, 1276, 10.1016/j.actamat.2009.10.032

Qiu, 2011, Work toughening effect of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass, Chin. Sci. Bull., 56, 3942, 10.1007/s11434-011-4782-7

Huang, 2010, Tuning the mechanical performance of a Ti-based bulk metallic glass by pre-deformation, Intermetallics, 18, 2044, 10.1016/j.intermet.2010.06.006

Park, 2012, Internal state modulation-mediate plasticity enhancement in monolithic Ti-based bulk metallic glass, Intermetallics, 29, 70, 10.1016/j.intermet.2012.05.003

Nieh, 2012, Effect of surface modification on shear banding and plasticity in metallic glasses: An overview, Prog. Nat. Sci. Mater. Int., 22, 355, 10.1016/j.pnsc.2012.09.006

Zhang, 2006, Making metallic glasses plastic by control of residual stress, Nat. Mater., 5, 857, 10.1038/nmat1758

Chen, 2011, Encapsulated Zr-based bulk metallic glass with large plasticity, Mater. Sci. Eng. A, 528, 2988, 10.1016/j.msea.2010.12.077

Qiu, 2008, Novel application of the electrodeposition on bulk metallic glasses, Appl. Surf. Sci., 255, 3454, 10.1016/j.apsusc.2008.07.077

Fan, 2011, Improved plasticity and fracture toughness in metallic glasses via surface crystallization, Intermetallics, 19, 1420, 10.1016/j.intermet.2011.05.012

Madge, 2015, Toughness of bulk metallic glasses, Metals, 5, 1279, 10.3390/met5031279

Wang, 2007, Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses, Phys. Rev. Lett., 98, 235501, 10.1103/PhysRevLett.98.235501

Lewandowski, 2008, Tough Fe-based bulk metallic glasses, Appl. Phys. Lett., 92, 091918, 10.1063/1.2890489

Demetriou, 2011, A damage-tolerant glass, Nat. Mater., 10, 123, 10.1038/nmat2930

Gu, 2010, Compressive plasticity and toughness of a Ti-based bulk metallic glass, Acta Mater., 58, 1708, 10.1016/j.actamat.2009.11.013

Chen, 2015, Does the fracture toughness of bulk metallic glasses scatter?, Scr. Mater., 107, 1, 10.1016/j.scriptamat.2015.05.003

Yamaura, 2014, Ultrasonic fatigue of Ti40Zr10Cu34Pd14Sn2 glassy alloy, Open J. Met., 4, 56, 10.4236/ojmetal.2014.43007

Fujita, 2008, Ultrahigh fatigue strength in Ti-based bulk metallic glasses, Rev. Adv. Mater. Sci., 18, 137

Wang, 2005, Fatigue behavior of Zr-Ti–Ni–Cu–Be bulk-metallic glasses, Intermetallics, 13, 429, 10.1016/j.intermet.2004.07.037

Fujita, 2012, Fatigue properties in high strength bulk metallic glasses, Intermetallics, 30, 12, 10.1016/j.intermet.2012.03.021

Peter, 1984, Influence of texture on fatigue properties of Ti–6Al–4V, Metall. Mater. Trans. A, 15, 1597, 10.1007/BF02657799

Schroers, 2007, Thermoplastic forming of bulk metallic glass-applications for MEMS and microstructure fabrication, Mater. Sci. Eng. A, 449–451, 898, 10.1016/j.msea.2006.02.398

Schroers, 2010, Processing of bulk metallic glass, Adv. Mater., 22, 1566, 10.1002/adma.200902776

Li, 2016, Thermoplastic micro-forming of bulk metallic glasses: A review, JOM, 68, 1246, 10.1007/s11837-016-1844-y

Schroers, 2008, On the formability of bulk metallic glass in its supercooled liquid state, Acta Mater., 56, 471, 10.1016/j.actamat.2007.10.008

Fan, 2004, Viscous flow of the Pd43Ni10Cu27P20 metallic glass-forming liquid, Appl. Phys. Lett., 84, 487, 10.1063/1.1644052

Legg, 2007, Thermodynamics, kinetics, and crystallization of Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glass, Acta Mater., 55, 1109, 10.1016/j.actamat.2006.09.024

Schroers, 2005, Gold based bulk metallic glasses, Appl. Phys. Lett., 87, 061912, 10.1063/1.2008374

Mukherjee, 2004, Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass-forming ability, Acta Mater., 52, 3689, 10.1016/j.actamat.2004.04.023

Waniuk, 2001, Critical cooling rate and thermal stability of Zr-Ti–Cu–Ni–Be alloys, Appl. Phys. Lett., 778, 1213, 10.1063/1.1350624

Busch, 1998, Thermodynamics and kinetics of the Mg65Cu25Y20 bulk metallic glass-forming liquid, J. Appl. Phys., 83, 4134, 10.1063/1.367167

Park, 2015, Oxidation behavior of Ti–Cu binary metallic glass, Corros. Sci., 99, 304, 10.1016/j.corsci.2015.07.027

Park, 2016, Effect of minor addition of Zr on the oxidation behavior of Ti–Cu metallic glass, Corros. Sci., 22, 229

Zhang, 2014, Air oxidation of a Zr55Cu30Al10Ni5 bulk metallic glass at its super cooled liquid state, Corros. Sci., 82, 410, 10.1016/j.corsci.2014.02.007

Li, 2014, Enhanced formability of a Zr-based bulk metallic glass in a supercooled liquid state by vibrational loading, Acta Mater., 65, 400, 10.1016/j.actamat.2013.11.009

Liu, 2015, General nanomoulding with bulk metallic glasses, Nanotechnology, 26, 143501

Morrison, 2007, Electrochemical behavior of a Ti-based bulk metallic glass, J. Non-Cryst. Solids, 353, 2115, 10.1016/j.jnoncrysol.2007.03.012

Fornell, 2013, Improved plasticity and corrosion behavior in Ti–Zr–Cu–Pd metallic glass with minor additions of Nb: An alloy composition intended for biomedical applications, Mater. Sci. Eng. A, 559, 159, 10.1016/j.msea.2012.08.058

Qin, 2006, Corrosion behavior of Ti-based metallic glasses, Mater. Trans., 47, 1934, 10.2320/matertrans.47.1934

Qin, 2007, Corrosion behavior of a Ti-based bulk metallic glass and its crystalline alloys, Mater. Trans., 48, 1855, 10.2320/matertrans.MJ200713

Li, 2016, Recent advances in bulk metallic glasses for biomedical applications, Acta Biomater., 36, 1, 10.1016/j.actbio.2016.03.047

Calin, 2013, Designing biocompatible Ti-based metallic glasses for implant applications, Mater. Sci. Eng. C, 33, 875, 10.1016/j.msec.2012.11.015

Niinomi, 2008, Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Biomed., 1, 30, 10.1016/j.jmbbm.2007.07.001

Wang, 2006, Correaltions between elastic moduli and properties in bulk metallic glasses, J. Appl. Phys., 99, 093506, 10.1063/1.2193060

Huang, 2015, Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region, Mater. Sci. Eng. C, 52, 144, 10.1016/j.msec.2015.03.056

Oak, 2007, Attempt to develop Ti-based amorphous alloys for biomaterials, Mater. Sci. Eng. A, 449–451, 220, 10.1016/j.msea.2006.02.307

Huang, 2012, Corrosion resistance and biocompatibility of Ni-free Zr-based bulk metallic glass for biomedical applications, Intermetallics, 30, 139, 10.1016/j.intermet.2012.03.015

Wang, 2013, In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material, Mater. Sci. Eng. C, 33, 3489, 10.1016/j.msec.2013.04.038

Kukubun, 2015, In vivo evaluation of a Ti-based bulk metallic glass alloy bar, Bio-med. Mater. Eng., 26, 9, 10.3233/BME-151546

Nishiyama, 2007, Novel applications of bulk metallic glass for industrial products, J. Non-Cryst. Solids, 353, 3615, 10.1016/j.jnoncrysol.2007.05.170

Inoue, 2011, Recent development and application products of bulk glassy alloys, Acta Mater., 59, 2243, 10.1016/j.actamat.2010.11.027

Axinte, 2012, Recent progress in the industrialization of metallic glass, Recent Pat. Mater. Sci., 5, 213, 10.2174/1874464811205030213

Wang, 2011, A Maxwell-pulse constitutive model of Zr55Cu30Al10Ni5 metallic glass in supercooled liquid region, J. Alloy. Compd., 509, 2518, 10.1016/j.jallcom.2010.11.070

Li, 2012, Amorphous metallic glass biosensors, Intermetallics, 30, 80, 10.1016/j.intermet.2012.03.030

Nishiyama, 2007, Recent progress of bulk metallic glasses for strain-sensing devices, Mater. Sci. Eng. A, 449–451, 79, 10.1016/j.msea.2006.02.384

Ashby, 2006, Metallic glasses as structural materials, Scr. Mater., 54, 321, 10.1016/j.scriptamat.2005.09.051

Khun, 2016, Mechanical and tribological properties of Zr-based bulk metallic glass for sports applications, Mater. Des., 92, 667, 10.1016/j.matdes.2015.12.050

Wang, 2013, The effect of simulated thermal cycling on thermal and mechanical stability of a Ti-based bulk metallic glass, J. Alloy. Compd., 575, 449, 10.1016/j.jallcom.2013.05.194

Wang, X., Gong, P., Shao, Y., and Yao, K.F. (2016). Chemical composition dependence of atomic oxygen erosion resistance in Ti-based bulk metallic glasses, Unpublished work.