Đánh giá về Quy trình và Tính chất của Nanocomposite Polyme và Vật liệu Nanocoating cùng Ứng dụng trong Lĩnh vực Đóng gói, Ô tô và Năng lượng Mặt Trời

Nanomaterials - Tập 7 Số 4 - Trang 74
Kerstin Müller1, Elodie Bugnicourt2, Marcos Latorre3, María Jordá-Beneyto3, Yolanda Echegoyen Sanz4,5, José M. Lagarón4, Oliver Miesbauer1, Alvise Bianchin6, Steve Hankin7, U. Bölz8, Germán Pérez9, Marius Jesdinszki1, Martina Lindner1, Zuzana Scheuerer1, S Castello10, Markus Schmid11,1
1Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354, Freising, Germany
2IRIS, Parc Mediterrani de la Tecnologia, Avda. Carl Friedrich Gauss 11, 08860 Castelldefels, Barcelona, Spain
3ITENE Instituto Tecnológico del Embalaje, Transporte y Logística, Albert Einstein, 1, 46980 Paterna, Spain
4Institute of Agrochemistry and Food Technology (IATA)-CSIC, Avda. Agustín Escardino, 7, 46980 Paterna, Spain
5Science Education Department, Facultat de Magisteri, Universitat de València, 46022 València, Spain
6MBN Nanomaterialia, via Bortolan 42, 31040 Vascon di Carbonera, Italy
7Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
8HPX Polymers GmbH, Ziegeleistraße 1, 82327 Tutzing, Germany
9Eurecat, Av. Universitat Autònoma 23, 08290 Cerdanyola del Vallès, Barcelona, Spain
10Bioinicia, Calle Algepser, 65-Nave 3 | Polígono Industrial Táctica | 46980 Paterna (Valencia), Spain
11Chair for Food Packaging Technology, Technische Universität München, Weihenstephaner Steig 22, 85354 Freising, Germany

Tóm tắt

Trong những thập kỷ vừa qua, các vật liệu nanocomposite đã được nghiên cứu rộng rãi trong tài liệu khoa học vì chúng mang lại những cải tiến về tính chất, ngay cả với hàm lượng hạt nano thấp. Hiệu suất của chúng phụ thuộc vào nhiều tham số, nhưng trạng thái phân tán và phân bố hạt nano vẫn là thách thức chính để đạt được tiềm năng đầy đủ của nanocomposite về mặt, ví dụ, khả năng chống cháy, tính chất cơ học, rào cản và nhiệt, v.v., điều này sẽ cho phép mở rộng việc sử dụng chúng trong công nghiệp. Trong khi số lượng nghiên cứu hiện có và thực tế là các bài báo tổng quan liên quan đến công thức của nanocomposite đã đáng kể, sau khi liệt kê các ứng dụng phổ biến nhất, bài đánh giá này tập trung sâu hơn vào các tính chất và vật liệu có liên quan trong ba lĩnh vực mục tiêu: đóng gói, năng lượng mặt trời và ô tô. Về các tiến bộ trong quy trình chế biến nanocomposite, bài đánh giá này thảo luận về các công nghệ cải thiện khác nhau như việc sử dụng siêu âm để phân tán hạt nano trong quá trình. Đối với các lớp phủ nano, nó mô tả các quy trình đã được sử dụng conventionally, cũng như việc lắng đọng hạt nano thông qua quy trình điện-hidrodynamic. Tóm lại, bài đánh giá này cung cấp các cơ sở cả về thành phần và khía cạnh quy trình để đạt được các tính chất tối ưu cho việc sử dụng nanocomposite trong các ứng dụng đã chọn. Như một cái nhìn tổng quát, các vấn đề an toàn nano cập nhật hiện nay được thảo luận.

Từ khóa


Tài liệu tham khảo

International Organization for Standardization (ISO) (2011). Part 4: Nanostructured Materials, International Organization for Standardization.

Schmid, 2012, Fundamental investigations regarding barrier properties of grafted PVOH layers, Int. J. Polym. Sci., 2012, 637837, 10.1155/2012/637837

Schmid, 2014, Water repellence and oxygen and water vapor barrier of pvoh-coated substrates before and after surface esterification, Polymers, 6, 2764, 10.3390/polym6112764

Hosokawa, M., Nogi, K., Naito, M., and Yokoyama, T. (2007). Nanoparticle Technology Handbook, Elsevier Science.

International Organization for Standardization (ISO) (2015). Part 2: Nano-Objects, International Organization for Standardization.

Okada, 2006, Twenty years of polymer-clay nanocomposites, Macromol. Mater. Eng., 291, 1449, 10.1002/mame.200600260

Bugnicourt, E. (2005). Development of Sub-Micro Structured Composites based on an Epoxy Matrix and Pyrogenic Silica: Mechanical Behavior Related to the Interactions and Morphology at Multi-Scale. [Ph.D. Thesis, Intelligence and National Security Alliance (INSA)].

Paul, 2008, Polymer nanotechnology: Nanocomposites, Polymer, 49, 3187, 10.1016/j.polymer.2008.04.017

McAdam, 2008, Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization, J. Appl. Polym. Sci., 108, 2242, 10.1002/app.25599

Lee, 2009, Free-Standing nanocomposite multilayers with various length scales, adjustable internal structures, and functionalities, J. Am. Chem. Soc., 131, 2579, 10.1021/ja8064478

Barreca, 2015, Fe2O3-TiO2 nanosystems by a hybrid PE-CVD/ALD approach: Controllable synthesis, growth mechanism, and photocatalytic properties, CrystEngComm, 17, 6219, 10.1039/C5CE00883B

Okamoto, 2003, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci., 28, 1539, 10.1016/j.progpolymsci.2003.08.002

Bertuoli, 2014, Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane, Appl. Clay Sci., 87, 46, 10.1016/j.clay.2013.11.020

2013, Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts, Appl. Clay Sci., 85, 109, 10.1016/j.clay.2013.09.004

Usuki, 1993, Synthesis of nylon 6-clay hybrid, J. Mater. Res., 8, 1179, 10.1557/JMR.1993.1179

Messersmith, 1994, Synthesis and characterization of layered silicate-epoxy nanocomposites, Chem. Mater., 6, 1719, 10.1021/cm00046a026

Xia, 2003, Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation, J. Appl. Polym. Sci., 87, 1811, 10.1002/app.11627

Costantino, 2012, Microstructure of PP/clay nanocomposites produced by shear induced injection moulding, Proc. Mater. Sci., 1, 34, 10.1016/j.mspro.2012.06.005

Xiao, 2013, Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films, J. Mater. Chem. B, 1, 3477, 10.1039/c3tb20303d

Si, 2015, A multifunctional transparent superhydrophobic gel nanocoating with self-healing properties, Chem. Commun., 51, 16794, 10.1039/C5CC06977G

Li, Y.C., Mannen, S., Cain, A.C., and Grunlan, J.C. (2011). Flame retardant polymer/clay layer-by-layer assemblies on cotton fabric. Abstr. Pap. Am. Chem. Soc., 241.

Holder, 2014, Stretchable gas barrier achieved with partially hydrogen-bonded multilayer nanocoating, Macromol. Rapid Commun., 35, 960, 10.1002/marc.201400104

Joshi, 2011, Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique, J. Appl. Polym. Sci., 119, 2793, 10.1002/app.32867

Rahman, A., Ashraf, A., Xin, H., Tong, X., Sutter, P., Eisaman, M.D., and Black, C.T. (2015). Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells. Nat. Commun., 6.

Wong, 2014, Nanotechnology impact on the automotive industry, Recent Patents Nanotechnol., 8, 181, 10.2174/187221050803141027101058

Arora, 2010, Review: Nanocomposites in food packaging, J. Food Sci., 75, R43, 10.1111/j.1750-3841.2009.01456.x

Mihindukulasuriya, 2014, Nanotechnology development in food packaging: A review, Trends Food Sci. Technol., 40, 149, 10.1016/j.tifs.2014.09.009

Anand, 2012, Enhanced condensation on lubricant-impregnated nanotextured surfaces, ACS Nano, 6, 10122, 10.1021/nn303867y

Sims, 2012, Plastic solar cells, Compr. Renew. Energy, 1, 439, 10.1016/B978-0-08-087872-0.00120-7

(2016, February 18). Solar Cells That Can Face almost Any Direction and Keep Themselves Clean. Available online: http://m.phys.org/news/2015-12-solar-cells.html.

Alexandre, 2000, Polymer-Layered silicate nanocomposites: Preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R-Rep., 28, 1, 10.1016/S0927-796X(00)00012-7

Kamigaito, 1991, What can be improved by nanometer composites?, J. Jpn. Soc. Powder Powder Metall., 38, 315, 10.2497/jjspm.38.315

Vaia, 1997, Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment, Macromolecules, 30, 8000, 10.1021/ma9603488

Vaia, 1997, Lattice model of polymer melt intercalation in organically-modified layered silicates, Macromolecules, 30, 7990, 10.1021/ma9514333

Tomasko, 2003, Supercritical fluid applications in polymer nanocomposites, Curr. Opin. Solid State Mater. Sci., 7, 407, 10.1016/j.cossms.2003.10.005

Carrado, 1998, In situ synthesis of polymer-clay nanocomposites from silicate gels, Chem. Mater., 10, 1440, 10.1021/cm970814n

Mbhele, 2003, Fabrication and characterization of silver-polyvinyl alcohol nanocomposites, Chem. Mater., 15, 5019, 10.1021/cm034505a

Park, 2003, Processing of iron oxide-epoxy vinyl ester nanocomposites, J. Compos. Mater., 37, 465, 10.1177/0021998303037005036

Xu, 1998, Gamma-Radiation synthesis of poly(acrylic acid) metal nanocomposites, Mater. Lett., 37, 354, 10.1016/S0167-577X(98)00119-0

Gangopadhyay, 2000, Conducting polymer nanocomposites: A brief overview, Chem. Mater., 12, 608, 10.1021/cm990537f

Tracton, A.A. (2005). Coatings Technology Handbook, CRC Press. [3rd ed.].

Embuscado, M., and Huber, K.C. (2009). Edible Films and Coatings for Food Applications, Springer.

Rastogi, 2015, Bio-Based coatings for paper applications, Coatings, 5, 887, 10.3390/coatings5040887

Domininghaus, H., Eyerer, P., Elsner, P., and Hirth, T. (2008). Kunststoffe: Eigenschaften und Anwendungen; mit 240 Tabellen, Springer-Verlag GmbH.

Braun, D. (2003). Kunststofftechnik für Einsteiger, Hanser.

Kaiser, W. (2007). Kunststoffchemie für Ingenieure, Hanser.

Dennis, 2001, Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites, Polymer, 42, 9513, 10.1016/S0032-3861(01)00473-6

Chavarria, 2007, Effect of melt processing conditions on the morphology and properties of nylon 6 nanocomposites, Polym. Eng. Sci., 47, 1847, 10.1002/pen.20894

Lapshin, 2008, Ultrasound aided extrusion process for preparation of polyolefin-clay nanocomposites, Polym. Eng. Sci., 48, 1584, 10.1002/pen.21135

Fornes, 2001, Nylon 6 nanocomposites: The effect of matrix molecular weight, Polymer, 42, 9929, 10.1016/S0032-3861(01)00552-3

Villmow, 2008, Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes, Compos. Sci. Technol., 68, 777, 10.1016/j.compscitech.2007.08.031

Chandra, A., Kramschuster, A.J., Hu, X., and Turng, L.S. (2007, January 6–11). Effect of injection molding parameters on the electrical conductivity of polycarbonate/carbon nanotube nanocomposites. Proceedings of the Annual Technical Conference (ANTEC), Cincinnati, OH, USA.

Stan, 2014, Effect of processing parameters and strain rate on mechanical properties of carbon nanotube-filled polypropylene nanocomposites, Compos. Part B Eng., 59, 109, 10.1016/j.compositesb.2013.11.023

Rios, 2011, Impact of injection-molding processing parameters on the electrical, mechanical, and thermal properties of thermoplastic/carbon nanotube nanocomposites, J. Appl. Polym. Sci., 120, 70, 10.1002/app.32983

Schmid, 2012, Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties, Int. J. Polym. Sci., 2012, 1, 10.1155/2012/637837

2009, Nanocomposites for food packaging applications, Food Res. Int., 42, 1240, 10.1016/j.foodres.2009.03.019

Alberto, R. (2016, February 04). Fundamentos de la Tecnología de Extrusión de Película Cast. Available online: http://www.plastico.com/.

Coltelli, M.-B., Wild, F., Bugnicourt, E., Cinelli, P., Lindner, M., Schmid, M., Weckel, V., Müller, K., Rodriguez, P., and Staebler, A. (2016). State of the art in the development and properties of protein-based films and coatings and their applicability to cellulose based products: An extensive review. Coatings, 6.

Caruso, 2001, Sol-Gel nanocoating: An approach to the preparation of structured materials, Chem. Mater., 13, 3272, 10.1021/cm001257z

Anghel, I., Holban, A.M., Andronescu, E., Grumezescu, A.M., and Chifiriuc, M.C. (2013). Efficient surface functionalization of wound dressings by a phytoactive nanocoating refractory to candida albicans biofilm development. Biointerphases, 8.

Gurzawska, 2014, Osteoblastic response to pectin nanocoating on titanium surfaces, Mater. Sci. Eng. C Mater., 43, 117, 10.1016/j.msec.2014.06.028

Cometa, 2014, Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants, Carbohydr. Polym., 110, 173, 10.1016/j.carbpol.2014.03.097

Park, 2014, Nanocoating of single cells: From maintenance of cell viability to manipulation of cellular activities, Adv. Mater., 26, 2001, 10.1002/adma.201304568

Chen, 2014, Continuous polymer nanocoating on silica nanoparticles, Langmuir, 30, 7804, 10.1021/la500834p

Smietana, 2010, Nanocoating enhanced optical fiber sensors, Ceram. Trans., 222, 275, 10.1002/9780470930991.ch26

Chen, 2014, Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries, J. Alloy Compd., 601, 38, 10.1016/j.jallcom.2014.02.130

Hamedi, 2015, Using energy parameters based on the surface free energy concept to evaluate the moisture susceptibility of hot mix asphalt, Road Mater. Pavement, 16, 239, 10.1080/14680629.2014.990049

Hsieh, 2011, Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating, Appl. Surf. Sci., 257, 7997, 10.1016/j.apsusc.2011.04.071

Zhang, 2013, Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate, Nanoscale, 5, 3013, 10.1039/c3nr34020a

Langowski, H.-C. (2008). Plastic Packaging, Wiley-VCH Verlag GmbH & Co. KGaA.

Bishop, C. (2011). Vacuum Deposition onto Webs, Films and Foils, Elsevier Science.

Fahlteich, J. (2010). Transparente Hochbarriereschichten auf Flexiblen Substraten. [Ph.D. Thesis, Technische Universität Chemnitz].

Torrisi, 2015, Metal-Polymer nanocomposites: (co-)evaporation/(co)sputtering approaches and electrical properties, Coatings, 5, 378, 10.3390/coatings5030378

Kim, 2010, Graphene/polymer nanocomposites, Macromolecules, 43, 6515, 10.1021/ma100572e

Yoon, 2006, Effects of parylene buffer layer on flexible substrate in organic light emitting diode, Thin Solid Films, 513, 258, 10.1016/j.tsf.2006.01.015

Kääriäinen, T., Cameron, D., Kääriäinen, M.L., and Sherman, A. (2013). Atomic Layer Deposition: Principles, Characteristics, and Nanotechnology Applications, Wiley.

Lewis, 2004, Thin-Film permeation-barrier technology for flexible organic light-emitting devices, IEEE J. Sel. Top. Quantum Electron., 10, 45, 10.1109/JSTQE.2004.824072

Miesbauer, 2014, Studies on the barrier performance and adhesion strength of novel barrier films for vacuum insulation panels, Energy Build., 85, 597, 10.1016/j.enbuild.2014.06.054

Miesbauer, 2008, Stofftransport durch Schichtsysteme aus Polymeren und dünnen anorganischen Schichten, Vak. Forsch. Prax., 20, 32, 10.1002/vipr.200800372

Langowski, 2002, Flexible materialien mit ultrahohen barriereeigenschaften. Flexible ultra high barrier materials, Vak. Forsch. Prax., 14, 297, 10.1002/1522-2454(200210)14:5<297::AID-VIPR297>3.0.CO;2-Q

Jaworek, 2007, Micro- and nanoparticle production by electrospraying, Powder Technol., 176, 18, 10.1016/j.powtec.2007.01.035

Wu, 2008, Electrohydrodynamic atomization: A versatile process for preparing materials for biomedical applications, J. Biomat. Sci.-Polym. E, 19, 573, 10.1163/156856208784089616

Fabra, M.J., Pardo, P., Martinez-Sanz, M., Lopez-Rubio, A., and Lagaron, J.M. (2016). Combining polyhydroxyalkanoates with nanokeratin to develop novel biopackaging structures. J. Appl. Polym. Sci., 133.

Khan, 2011, Direct patterning and electrospray deposition through ehd for fabrication of printed thin film transistors, Curr. Appl. Phys., 11, S271, 10.1016/j.cap.2010.11.044

Lagaron, 2014, Surfactant-Aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions, Carbohydr. Polym., 101, 249, 10.1016/j.carbpol.2013.09.032

Kango, 2013, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-a review, Prog. Polym. Sci., 38, 1232, 10.1016/j.progpolymsci.2013.02.003

Bugnicourt, 2006, Structural investigations of pyrogenic silica-epoxy composites by small-angle neutron scattering and transmission electron microscopy, Polymer, 48, 949, 10.1016/j.polymer.2006.12.012

Bugnicourt, E., Kehoe, T., Latorre, M., Serrano, C., Philippe, S., and Schmid, M. (2016). Recent prospects in the inline monitoring of nanocomposites and nanocoatings by optical technologies. Nanomaterials, 6.

Mittal, V. (2009). Optimization of Polymer Nanocomposite Properties, Wiley-VCH Verlag GmbH & Co. KGaA.

Rong, 2006, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review, Mater. Sci. Technol., 22, 787, 10.1179/174328406X101247

Fekete, 1990, Surface modification and characterization of particulate mineral fillers, J. Colloid Interface Sci., 135, 200, 10.1016/0021-9797(90)90300-D

Lin, 2006, Ultrasonic treatment of polypropylene, polyamide 6, and their blends, J. Appl. Polym. Sci., 102, 2643, 10.1002/app.24057

Kumar, 2002, Preparation and characterization of nickel-polystyrene nanocomposite by ultrasound irradiation, J. Appl. Polym. Sci., 86, 160, 10.1002/app.10930

Isayev, 2003, Continuous mixing and compounding of polymer/filler and polymer/polymer mixtures with the aid of ultrasound, Rubber Chem. Technol., 76, 923, 10.5254/1.3547782

Ullah, 2014, Surfactant-Assisted ball milling: A novel route to novel materials with controlled nanostructure—A review, Rev. Adv. Mater. Sci., 37, 1

Fecht, 1990, Nanocrystalline metals prepared by high-energy ball milling, Metall. Trans., 21, 2333, 10.1007/BF02646980

Nandhini, 2012, Supercapacitor electrodes using nanoscale activated carbon from graphite by ball milling, Mater. Lett., 87, 165, 10.1016/j.matlet.2012.07.092

Cho, 2009, Synthesis of dispersed CaCO3 nanoparticles by the ultrafine grinding, J. Ind. Eng. Chem., 15, 243, 10.1016/j.jiec.2008.10.005

Zhang, 2004, Processing of advanced materials using high-energy mechanical milling, Prog. Mater. Sci., 49, 537, 10.1016/S0079-6425(03)00034-3

Mark, 1984, Simultaneous curing and filling of elastomers, Macromolecules, 17, 2613, 10.1021/ma00142a026

Wen, 1996, Organic/inorganic hybrid network materials by the sol-gel approach, Chem. Mater., 8, 1667, 10.1021/cm9601143

Huang, 1985, Ceramers: Hybrid Materials Incorporating Polymeric/Oligomeric Species with Inorganic Glasses Utilizing a Sol-Gel Process, Polym. Bull., 14, 557, 10.1007/BF00271615

Fischer, 2003, Polymer nanocomposites: From fundamental research to specific applications, Mat. Sci. Eng. C, 23, 763, 10.1016/j.msec.2003.09.148

The Royal Society (2004). Nanoscience and Nanotechnologies: Opportunities and Uncertainties, The Royal Society & The Royal Academy of Engineering.

Oriakhi, 1998, Nano sandwiches, Chem. Br., 34, 59

Usuki, 1993, Swelling behavior of montmorillonite cation exchanged for omega-amino acids by epsilon-caprolactam, J. Mater. Res., 8, 1174, 10.1557/JMR.1993.1174

Kuchibhatla, 2007, One dimensional nanostructured materials, Prog. Mater. Sci., 52, 699, 10.1016/j.pmatsci.2006.08.001

Li, 2009, Conducting polymer nanomaterials: Electrosynthesis and applications, Chem. Soc. Rev., 38, 2397, 10.1039/b816681c

Tran, 2009, One-Dimensional conducting polymer nanostructures: Bulk synthesis and applications, Adv. Mater., 21, 1487, 10.1002/adma.200802289

MacDiarmid, 2001, “Synthetic metals”: A novel role for organic polymers (nobel lecture), Angew. Chem. Int. Ed., 40, 2581, 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2

Heeger, 2010, Semiconducting polymers: The third generation, Chem. Soc. Rev., 39, 2354, 10.1039/b914956m

Manias, 2007, Nanocomposites: Stiffer by design, Nat. Mater., 6, 9, 10.1038/nmat1812

Muncke, J. (2016, February 04). Food Packaging Materials. Available online: http://www.foodpackagingforum.org/food-packaging-health/food-packaging-materials.

Yam, K.L. (2009). The Wiley Encyclopedia of Packaging Technology, Wiley. [3rd ed.].

Hammann, 2014, Determination and quantification of molecular interactions in protein films: A review, Materials, 7, 7975, 10.3390/ma7127975

Zink, J., Wyrobnik, T., Prinz, T., and Schmid, M. (2016). Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review. Int. J. Mol. Sci., 17.

Schmid, 2015, Storage time-dependent alteration of molecular interaction-property relationships of whey protein isolate-based films and coatings, J. Mater. Sci., 50, 4396, 10.1007/s10853-015-8994-0

Schmid, 2015, Permeation of water vapour, nitrogen, oxygen and carbon dioxide through whey protein isolate based films and coatings—Permselectivity and activation energy, Food Packag. Shelf Life, 6, 21, 10.1016/j.fpsl.2015.08.002

Zhang, 1998, Oxygen ingress in plastic retortable packages during thermal processing and storage, J. Plast. Film Sheeting, 14, 287, 10.1177/875608799801400404

Yeo, 2001, Rheological, morphological, mechanical, and barrier properties of pp/evoh blends, Adv. Polym. Technol., 20, 191, 10.1002/adv.1015

Lagaron, 2001, Study of the influence of water sorption in pure components and binary blends of high barrier ethylene-vinyl alcohol copolymer and amorphous polyamide and nylon-containing ionomer, Polymer, 42, 9531, 10.1016/S0032-3861(01)00496-7

Reig, 2014, Nanomaterials: A map for their selection in food packaging applications, Packag. Technol. Sci., 27, 839, 10.1002/pts.2076

Vladimirov, 2006, Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties, Compos. Sci. Technol., 66, 2935, 10.1016/j.compscitech.2006.02.010

Kim, 2007, Crystallization behaviors and mechanical properties of poly(ethylene 2,6-naphthalate)/multiwall carbon nanotube nanocomposites, Polym. Eng. Sci., 47, 1715, 10.1002/pen.20789

Chen, 2008, Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch, Carbohydr. Polym., 73, 8, 10.1016/j.carbpol.2007.10.015

Azeredo, 2009, Nanocomposite edible films from mango puree reinforced with cellulose nanofibers, J. Food Sci., 74, N31, 10.1111/j.1750-3841.2009.01186.x

Wood, 2010, Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles, J. Agric. Food Chem., 58, 3753, 10.1021/jf9033128

Cao, 2008, Green composites reinforced with hemp nanocrystals in plasticized starch, J. Appl. Polym. Sci., 109, 3804, 10.1002/app.28418

Podsiadlo, 2005, Molecularly engineered nanocomposites: Layer-by-layer assembly of cellulose nanocrystals, Biomacromolecules, 6, 2914, 10.1021/bm050333u

Aouada, 2009, Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles, J. Food Eng., 92, 448, 10.1016/j.jfoodeng.2008.12.015

Lorevice, 2011, Highly stable, edible cellulose films incorporating chitosan nanoparticles, J. Food Sci., 76, N25

Choudalakis, 2009, Permeability of polymer/clay nanocomposites: A review, Eur. Polym. J., 45, 967, 10.1016/j.eurpolymj.2009.01.027

Duncan, 2011, Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors, J. Colloid Interface Sci., 363, 1, 10.1016/j.jcis.2011.07.017

Nielsen, 1967, Models for the permeability of filled polymer systems, J. Macromol. Sci., 1, 929, 10.1080/10601326708053745

Lape, 2004, Polydisperse flakes in barrier films, J. Membr. Sci., 236, 29, 10.1016/j.memsci.2003.12.026

Gusev, 2001, Rational design of nanocomposites for barrier applications, Adv. Mater., 13, 1641, 10.1002/1521-4095(200111)13:21<1641::AID-ADMA1641>3.0.CO;2-P

Fredrickson, 1999, Barrier properties of oriented disk composites, J. Chem. Phys., 110, 2181, 10.1063/1.477829

Bharadwaj, 2001, Modeling the barrier properties of polymer-layered silicate nanocomposites, Macromolecules, 34, 9189, 10.1021/ma010780b

Sun, 2008, Barrier properties of model epoxy nanocomposites, J. Membr. Sci., 318, 129, 10.1016/j.memsci.2008.02.041

Picard, 2007, Influence of the intercalated cations on the surface energy of montmorillonites: Consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites, J. Colloid Interface Sci., 307, 364, 10.1016/j.jcis.2006.12.006

Fornes, 2003, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer, 44, 4993, 10.1016/S0032-3861(03)00471-3

Sen, 2007, Molecular underpinnings of the mechanical reinforcement in polymer nanocomposites, Macromolecules, 40, 4059, 10.1021/ma070512z

Vaia, 2001, Liquid crystal polymer nanocomposites: Direct intercalation of thermotropic liquid crystalline polymers into layered silicates, Polymer, 42, 1281, 10.1016/S0032-3861(00)00508-5

Bugnicourt, 2007, Effect of sub-micron silica fillers on the mechanical performances of epoxy-based composites, Polymer, 48, 1596, 10.1016/j.polymer.2007.01.053

Hunter, 2007, Processing and properties of polymers modified by clays, MRS Bull., 32, 323, 10.1557/mrs2007.230

Hotta, 2004, Nanocomposites formed from linear low density polyethylene and organoclays, Polymer, 45, 7639, 10.1016/j.polymer.2004.08.059

Jang, 2012, Combined numerical/experimental investigation of particle diameter and interphase effects on coefficient of thermal expansion and young’s modulus of SiO2/epoxy nanocomposites, Polym. Compos., 33, 1415, 10.1002/pc.22268

Yu, 2009, Multi-Scale modeling of cross-linked epoxy nanocomposites, Polymer, 50, 945, 10.1016/j.polymer.2008.11.054

Choi, 2011, The glass transition and thermoelastic behavior of epoxy-based nanocomposites: A molecular dynamics study, Polymer, 52, 5197, 10.1016/j.polymer.2011.09.019

Tsai, 2008, Characterizing mechanical properties of particulate nanocomposites using micromechanical approach, J. Compos. Mater., 42, 2345, 10.1177/0021998308095503

Yang, 2008, Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites, Appl. Phys. Lett., 93, 043111, 10.1063/1.2965486

Liu, 2008, Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites, Compos. Sci. Technol., 68, 1502, 10.1016/j.compscitech.2007.10.033

Yang, 2013, Elastoplastic modeling of polymeric composites containing randomly located nanoparticles with an interface effect, Compos. Struct., 99, 123, 10.1016/j.compstruct.2012.11.043

Goertzen, 2008, Thermal expansion of fumed silica/cyanate ester nanocomposites, J. Appl. Polym. Sci., 109, 647, 10.1002/app.28071

Yu, 2011, Multiscale modeling of cross-linked epoxy nanocomposites to characterize the effect of particle size on thermal conductivity, J. Appl. Phys., 110, 124302, 10.1063/1.3667179

Shin, 2013, Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with kapitza thermal resistance, Polymer, 54, 1543, 10.1016/j.polymer.2013.01.020

Boudenne, 2013, Effect of filler size on thermophysical and electrical behavior of nanocomposites based on expanded graphite nanoparticles filled in low-density polyethylene matrix, Polym. Compos., 34, 149, 10.1002/pc.22387

Harton, 2010, Immobilized polymer layers on spherical nanoparticles, Macromolecules, 43, 3415, 10.1021/ma902484d

Choi, 2012, Method of scale bridging for thermoelasticity of cross-linked epoxy/sic nanocomposites at a wide range of temperatures, Polymer, 53, 5178, 10.1016/j.polymer.2012.08.041

Qiao, 2009, Simulation of interphase percolation and gradients in polymer nanocomposites, Compos. Sci. Technol., 69, 491, 10.1016/j.compscitech.2008.11.022

Hadden, 2013, Molecular modeling of epon-862/graphite composites: Interfacial characteristics for multiple crosslink densities, Compos. Sci. Technol., 76, 92, 10.1016/j.compscitech.2013.01.002

Buryachenko, 2005, Multi-Scale mechanics of nanocomposites including interface: Experimental and numerical investigation, Compos. Sci. Technol., 65, 2435, 10.1016/j.compscitech.2005.08.005

Buryan, 2002, Modeling of the interphase of polymer-matrix composites: Determination of its structure and mechanical properties, Mech. Compos. Mater., 38, 187, 10.1023/A:1016008432083

Bhuiyan, 2011, Tensile modulus of carbon nanotube/polypropylene composites—A computational study based on experimental characterization, Comput. Mater. Sci., 50, 2347, 10.1016/j.commatsci.2011.03.009

Bhuiyan, 2013, Defining the lower and upper limit of the effective modulus of CNT/polypropylene composites through integration of modeling and experiments, Compos. Struct., 95, 80, 10.1016/j.compstruct.2012.06.025

Ayatollahi, 2011, Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading, Compos. Struct., 93, 2250, 10.1016/j.compstruct.2011.03.013

Shokrieh, 2010, On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region, Compos. Struct., 92, 647, 10.1016/j.compstruct.2009.09.033

Arrighi, 2003, The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller, Polymer, 44, 6259, 10.1016/S0032-3861(03)00667-0

Yang, 2013, Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection, Int. J. Plast., 41, 124, 10.1016/j.ijplas.2012.09.010

Mortezaei, 2011, The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite, Compos. Sci. Technol., 71, 1039, 10.1016/j.compscitech.2011.02.012

Fragiadakis, 2005, Glass transition and molecular dynamics in poly (dimethylsiloxane)/silica nanocomposites, Polymer, 46, 6001, 10.1016/j.polymer.2005.05.080

Yang, 2009, A scale-bridging method for nanoparticulate polymer nanocomposites and their nondilute concentration effect, Appl. Phys. Lett., 94, 223104, 10.1063/1.3143669

Loo, 2000, Polymer crystallization in 25-nm spheres, Phys. Rev. Lett., 84, 4120, 10.1103/PhysRevLett.84.4120

Loo, 2002, Modes of crystallization in block copolymer microdomains: Breakout, templated, and confined, Macromolecules, 35, 2365, 10.1021/ma011824j

Santana, 1994, Homogeneous nucleation of the dispersed crystallisable component of immiscible polymer blends, Polym. Bull., 32, 471, 10.1007/BF00587890

Woo, 2007, From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement, Phys. Rev. Lett., 98, 136103, 10.1103/PhysRevLett.98.136103

Wu, 2007, Crystallization and orientation of syndiotactic polystyrene in nanorods, Macromolecules, 40, 4244, 10.1021/ma070564o

Shin, 2007, Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores, Macromolecules, 40, 6617, 10.1021/ma070994e

Iannace, 2004, Isothermal crystallization in pcl/clay nanocomposites investigated with thermal and rheometric methods, Polymer, 45, 8893, 10.1016/j.polymer.2004.10.037

Zhang, 2003, Multiple melting and crystallization of nylon-66/montmorillonite nanocomposites, J. Polym. Sci. Part B, 41, 2861, 10.1002/polb.10608

Mu, 2007, Nonisothermal crystallization kinetics of nylon 66/montmorillonite nanocomposites, J. Macromol. Sci. Part B, 46, 1093, 10.1080/00222340701582522

Nam, 2003, Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite, Macromolecules, 36, 7126, 10.1021/ma034623j

Lincoln, 2004, Isothermal crystallization of nylon-6/montmorillonite nanocomposites, Macromolecules, 37, 4554, 10.1021/ma049768k

Li, 2007, Structure and crystallization behavior of nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents, Polymer, 48, 3452, 10.1016/j.polymer.2007.04.030

Phang, 2004, Crystallization and melting behavior of polyester/clay nanocomposites, Polym. Int., 53, 1282, 10.1002/pi.1513

Wu, 2005, Morphology, crystalline structure and isothermal crystallization kinetics of polybutylene terephthalate/montmorillonite nanocomposites, Polym. Polym. Compos., 13, 61

Bilotti, 2008, Polymer nanocomposites based on needle-like sepiolite clays: Effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties, J. Appl. Polym. Sci., 107, 1116, 10.1002/app.25395

Xu, 2008, Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix, Polymer, 49, 330, 10.1016/j.polymer.2007.11.041

Homminga, 2005, Crystallization behavior of polymer/montmorillonite nanocomposites. Part I. Intercalated poly (ethylene oxide)/montmorillonite nanocomposites, Polymer, 46, 11359, 10.1016/j.polymer.2005.10.016

Chen, 2008, Isothermal and nonisothermal crystallization kinetics of nylon 6/functionalized multi-walled carbon nanotube composites, J. Polym. Sci. Part B, 46, 158, 10.1002/polb.21351

Harrats, 2008, Features, questions and future challenges in layered silicates clay nanocomposites with semicrystalline polymer matrices, Macromol. Rapid Commun., 29, 14, 10.1002/marc.200700432

2007, Thickness dependence of free-standing thin films, J. Polym. Sci. Part B, 45, 10, 10.1002/polb.20995

Rittigstein, 2006, Polymer-Nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging, J. Polym. Sci. Part B, 44, 2935, 10.1002/polb.20925

Pluta, 2007, Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties, Eur. Polym. J., 43, 2819, 10.1016/j.eurpolymj.2007.04.009

Siegel, R.W. (1993). Exploring mesoscopia: The bold new world of nanostructures. Phys. Today, 46.

Mayo, 1990, Mechanical properties of nanophase TiO2 as determined by nanoindentation, J. Mater. Res., 5, 1073, 10.1557/JMR.1990.1073

Mackay, 2006, General strategies for nanoparticle dispersion, Science, 311, 1740, 10.1126/science.1122225

Tuteja, 2005, Effect of ideal, organic nanoparticles on the flow properties of linear polymers: Non-einstein-like behavior, Macromolecules, 38, 8000, 10.1021/ma050974h

Merkel, 2002, Ultrapermeable, reverse-selective nanocomposite membranes, Science, 296, 519, 10.1126/science.1069580

Kharchenko, 2004, Flow-Induced properties of nanotube-filled polymer materials, Nat. Mater., 3, 564, 10.1038/nmat1183

Ren, 2003, Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites, Macromolecules, 36, 4443, 10.1021/ma020412n

Jain, 2005, Synthetic aspects and characterization of polypropylene-silica nanocomposites prepared via solid-state modification and sol-gel reactions, Polymer, 46, 6666, 10.1016/j.polymer.2005.05.021

Li, 2004, Novel morphologies of poly (phenylene oxide)(PPO)/polyamide 6 (PA6) blend nanocomposites, Polymer, 45, 7381, 10.1016/j.polymer.2004.09.018

Khatua, 2004, Effect of organoclay platelets on morphology of nylon-6 and poly (ethylene-ran-propylene) rubber blends, Macromolecules, 37, 2454, 10.1021/ma0352072

Si, 2006, Compatibilizing bulk polymer blends by using organoclays, Macromolecules, 39, 4793, 10.1021/ma060125+

Vo, 2007, Compatibilizing poly(vinylidene fluoride)/nylon-6 blends with nanoclay, Macromolecules, 40, 8271, 10.1021/ma071508q

Zhang, 2004, Kinetics-Controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO2 particles, Polymer, 45, 1913, 10.1016/j.polymer.2004.01.037

Wang, 2003, Compatibilization of immiscible poly(propylene)/polystyrene blends using clay, Macromol. Rapid Commun., 24, 231, 10.1002/marc.200390026

International Organization for Standardization (ISO) (2013). Road Vehicles, and Tractors and Machinery for Agriculture and Forestry—Determination of Burning Behaviour of Interior Materials, International Organization for Standardization.

Stevens, 2008, Harmonised fr regulations accelerate composites growth in public transportation, Reinf. Plast., 52, 40, 10.1016/S0034-3617(08)70243-1

Morgan, A., and Wilkie, C. (2007). Flame Retardant Polymer Nanocomposites, John Wiley & Sons, Inc.

Horrocks, A.R., Kandola, B.K., Nazare, S., and Padbury, S. (2004). MODEST, the MoDeSt Society.

Zanetti, 2000, Polymer layered silicate nanocomposites, Macromol. Mater. Eng., 279, 1, 10.1002/1439-2054(20000601)279:1<1::AID-MAME1>3.0.CO;2-Q

Hsiue, 2001, Flame-Retardant epoxy resins: An approach from organic-inorganic hybrid nanocomposites, J. Polym. Sci. Part A, 39, 986, 10.1002/1099-0518(20010401)39:7<986::AID-POLA1074>3.0.CO;2-W

Ndoro, 2011, Interface and interphase dynamics of polystyrene chains near grafted and ungrafted silica nanoparticles, Macromolecules, 45, 171, 10.1021/ma2020613

Ndoro, 2011, Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: Atomistic molecular dynamics simulations, Macromolecules, 44, 2316, 10.1021/ma102833u

Liu, 2011, Polymer-Nanoparticle interfacial behavior revisited: A molecular dynamics study, Phys. Chem. Chem. Phys., 13, 13058, 10.1039/c0cp02952a

Ragesh, 2014, A review on ‘self-cleaning and multifunctional materials’, J. Mater. Chem. A, 2, 14773, 10.1039/C4TA02542C

Kota, 2013, Superomniphobic surfaces: Design and durability, MRS Bull., 38, 383, 10.1557/mrs.2013.101

Tuteja, 2007, Designing superoleophobic surfaces, Science, 318, 1618, 10.1126/science.1148326

Bhushan, 2006, Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces, Nanotechnology, 17, 2758, 10.1088/0957-4484/17/11/008

Koch, 2008, Diversity of structure, morphology and wetting of plant surfaces, Soft Matter, 4, 1943, 10.1039/b804854a

Ensikat, 2011, Superhydrophobicity in perfection: The outstanding properties of the lotus leaf, Beilstein J. Nanotechnol., 2, 152, 10.3762/bjnano.2.19

Gao, 2012, Characterisation of surface wettability based on nanoparticles, Nanoscale, 4, 2202, 10.1039/c2nr11736c

Leng, 2009, Superoleophobic cotton textiles, Langmuir, 25, 2456, 10.1021/la8031144

Hsieh, 2009, Contact angle hysteresis and work of adhesion of oil droplets on nanosphere stacking layers, J. Phys. Chem. C, 113, 13683, 10.1021/jp9036952

Wang, 2011, Fabrication of superhydrophobic TPU film for oil-water separation based on electrospinning route, Mater. Lett., 65, 869, 10.1016/j.matlet.2010.12.024

Yang, 2010, Scalable fabrication of superhydrophobic hierarchical colloidal arrays, J. Colloid Interface Sci., 352, 558, 10.1016/j.jcis.2010.08.070

Yang, 2008, Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol-gel process, Chem. Mater., 20, 1233, 10.1021/cm703220r

Gould, 2003, Eu funding bonanza begins, Mater. Today, 6, 44, 10.1016/S1369-7021(03)01131-3

Mats, 2015, Electrowetting on superhydrophobic natural (colocasia) and synthetic surfaces based upon fluorinated silica nanoparticles, Microelectron. Eng., 148, 91, 10.1016/j.mee.2015.10.003

Perl, 2014, Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties, Nano Lett., 14, 5960, 10.1021/nl502977f

Li, F., Du, M., Zheng, Z., Song, Y.H., and Zheng, Q. (2015). A facile, multifunctional, transparent, and superhydrophobic coating based on a nanoscale porous structure spontaneously assembled from branched silica nanoparticles. Adv. Mater. Interfaces, 2.

Jiao, 2009, Narrow graphene nanoribbons from carbon nanotubes, Nature, 458, 877, 10.1038/nature07919

Chen, 2010, Controllable synthesis of new polymerizable macrosurfactants via cctp and raft techniques and investigation of their performance in emulsion polymerization, Langmuir, 26, 1724, 10.1021/la9037809

Cao, 2010, Transparent superhydrophobic and highly oleophobic coatings, Faraday Discuss., 146, 57, 10.1039/c003392h

Cha, 2009, Convective assembly and dry transfer of nanoparticles using hydrophobic/hydrophilic monolayer templates, Langmuir, 25, 11375, 10.1021/la901496s

Lassiaz, 2010, Organo-Lined alumina surface from covalent attachment of alkylphosphonate chains in aqueous solution, New J. Chem., 34, 1424, 10.1039/b9nj00762h

Sas, 2012, Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning, J. Polym. Sci. Part B, 50, 824, 10.1002/polb.23070

Menini, 2008, Production of superhydrophobic polymer fibers with embedded particles using the electrospinning technique, Polym. Int., 57, 77, 10.1002/pi.2315

Asmatulu, 2011, Study of superhydrophobic electrospun nanocomposite fibers for energy systems, Langmuir, 27, 504, 10.1021/la103661c

Shao, 2009, Electrospraying/electrospinning of poly(γ-stearyl-l-glutamate): Formation of surfaces with superhydrophobicity, Chin. J. Polym. Sci., 27, 115, 10.1142/S0256767909003728

Singh, 2005, Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers, Langmuir, 21, 11604, 10.1021/la052110v

Lagaron, 2013, High-Barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity, Carbohydr. Polym., 98, 1072, 10.1016/j.carbpol.2013.07.020

Deng, 2012, Candle soot as a template for a transparent robust superamphiphobic coating, Science, 335, 67, 10.1126/science.1207115

Seo, 2014, Candle-Based process for creating a stable superhydrophobic surface, Carbon, 68, 583, 10.1016/j.carbon.2013.11.038

Huang, Y.H. (2012). Hydrophobic and Lipophobic Coating Material. (20120219801 A1), U.S. Patent.

Valpey, R.S., and Jones, M.A. (2004). Process and Composition for Producing Self-Cleaning Surfaces from Aqueous Systems. (WO2004037944), International Patent.

Hu, J., Zou, H., Liu, G., Li, F., Lin, S., Zhang, G., Tu, Y., and Hu, M. (2015). Stable and Transparent Superhydrophobic Coating or Super Amphiphobic Its Preparation Method and Application. (CN103436138 B), Chinese Patent.

Kanagasabapathy, S., Baumgart, R.J., Dituro, M.A., Su, W.C., and Lockwood, F.E. (2009). Hydrophobic Self-Cleaning Coating Composition. (WO2008153687 A3), International Patent.

Zischka, M., Spanring, J., and Reischl, M. (2012). Method for Producing a Coated Packaging Material, and Packaging Material Having at least One Barrier Layer for Hydrophobic Compounds. (WO2012168433 A1), International Patent.

Lee, J.H., Jo, K.S., Lee, S.W., Park, M.Y., Lee, S.E., Lee, K.W., Kim, J.H., Lim, H.K., and Lee, S.S. (2013). Food Packing Material Having Hydrophobicity, Manufacturing Method and Mold Thereof. (WO2013012123 A1), International Patent.

Carew, D., and Hamilton, S.P. (2008). Hydrophobic Packaging Material including a Sulphite Salt. (WO2008025085 A1), International Patent.

Lindgren, E., Larsson, K., Sundstrand, S., and Andersson, A. (1997). Packaging Material Process for Producing Same and Use Thereof. (5603997 A), U.S. Patent.

Sajot, N., Pollacchi, B., and Sellak, S. (2008). Method of Gluing Hydrophobic and Oleophobic Substrates Which Are Intended for Packaging. (20080221247 A1), U.S. Patent.

Beydoun, 1999, Role of nanoparticles in photocatalysis, J. Nanopart. Res., 1, 439, 10.1023/A:1010044830871

Yoon, 2012, Antibacterial activity and photocatalysis of electrosprayed titania films, J. Electrochem. Soc., 159, H823, 10.1149/2.002211jes

Tudor, 2014, Hydrothermal synthesis of doped zno and tio2 nanomaterials: Oppurtunities for textile applications, UPB Sci. Bull. Ser. B, 76, 207

Serrano, C., Bugnicourt, E., Niculescu, C., Ghituleasa, C., Dumitrescu, I., Sobetkii, A., Mocioiu, A.M., Petriceanu, M., and Piticescu, R.M. (2015, January 5–7). Manucoat. Integrated manufacturing process of active textiles by deposition of doped TiO2. Proceedings of the ANNIC 2015 Applied Nanotechnology and Nanoscience International Conference, Paris, France.

Cantarella, 2016, Immobilization of nanomaterials in pmma composites for photocatalytic removal of dyes, phenols and bacteria from water, J. Photochem. Photobiol. A, 321, 1, 10.1016/j.jphotochem.2016.01.020

Hu, 2014, Graphene-Polymer nanocomposites for structural and functional applications, Prog. Polym. Sci., 39, 1934, 10.1016/j.progpolymsci.2014.03.001

Yano, 1997, Synthesis and properties of polyimide-clay hybrid films, J. Polym. Sci. Part A, 35, 2289, 10.1002/(SICI)1099-0518(199708)35:11<2289::AID-POLA20>3.0.CO;2-9

Rhim, 2007, Natural biopolymer-based nanocomposite films for packaging applications, Crit. Rev. Food Sci. Nutr., 47, 411, 10.1080/10408390600846366

Nazarenko, 2007, Gas barrier of polystyrene montmorillonite clay nanocomposites: Effect of mineral layer aggregation, J. Polym. Sci. Part B, 45, 1733, 10.1002/polb.21181

Choi, 2006, Preparation and barrier property of poly(ethylene terephthalate)/clay nanocomposite using clay-supported catalyst, J. Appl. Polym. Sci., 100, 4875, 10.1002/app.23268

Gimenez, 2007, Novel pet nanocomposites of interest in food packaging applications and comparative barrier performance with biopolyester nanocomposites, J. Plast. Film Sheeting, 23, 133, 10.1177/8756087907083590

Lagaron, 2005, Improving packaged food quality and safety. Part 2: Nanocomposites, Food Addit. Contam., 22, 994, 10.1080/02652030500239656

Thellen, 2005, Influence of montmorillonite layered silicate on plasticized poly(l-lactide) blown films, Polymer, 46, 11716, 10.1016/j.polymer.2005.09.057

Yamada, 2003, New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties, Polymer, 44, 6633, 10.1016/j.polymer.2003.08.021

Osman, 2005, Gas permeation properties of polyethylene-layered silicate nanocomposites, J. Mater. Chem., 15, 1298

Lotti, 2008, Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites, Eur. Polym. J., 44, 1346, 10.1016/j.eurpolymj.2008.02.014

Dadbin, 2008, Oxygen barrier LDPE/LLDPE/organoclay nano-composite films for food packaging, Macromol. Symp., 274, 22, 10.1002/masy.200851404

Geim, 2007, The rise of graphene, Nat. Mater., 6, 183, 10.1038/nmat1849

Bunch, 2008, Impermeable atomic membranes from graphene sheets, Nano Lett., 8, 2458, 10.1021/nl801457b

Leenaerts, 2008, Graphene: A perfect nanoballoon, Appl. Phys. Lett., 93, 193107, 10.1063/1.3021413

Yoo, 2014, Graphene and graphene oxide and their uses in barrier polymers, J. Appl. Polym. Sci., 131, 39628, 10.1002/app.39628

Huang, 2011, Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature, 469, 389, 10.1038/nature09718

Dreyer, 2010, The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228, 10.1039/B917103G

Suk, 2010, Mechanical properties of monolayer graphene oxide, ACS Nano, 4, 6557, 10.1021/nn101781v

Compton, 2010, Crumpled graphene nanosheets as highly effective barrier property enhancers, Adv. Mater., 22, 4759, 10.1002/adma.201000960

Kuila, 2012, Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites, Polym. Test., 31, 31, 10.1016/j.polymertesting.2011.09.007

Shim, 2012, Facile method to functionalize graphene oxide and its application to poly(ethylene terephthalate)/graphene composite, ACS Appl. Mater. Interfaces, 4, 4184, 10.1021/am300906z

Harel, 2013, Improving the oxygen barrier properties of polyethylene terephthalate by graphite nanoplatelets, J. Appl. Polym. Sci., 128, 1534, 10.1002/app.38302

Pinto, 2013, Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films, Polym. Int., 62, 33, 10.1002/pi.4290

Song, 2012, Permeability, viscoelasticity, and flammability performances and their relationship to polymer nanocomposites, Ind. Eng. Chem. Res., 51, 7255, 10.1021/ie300311a

NANOMASTER (2013). Nanomaster Periodic Report Summary, Community Research and Development Information Service.

Casiraghi, 2007, Diamond-Like carbon for data and beer storage, Mater. Today, 10, 44, 10.1016/S1369-7021(06)71791-6

Castillo, 2013, Thermoplastic starch films reinforced with talc nanoparticles, Carbohydr. Polym., 95, 664, 10.1016/j.carbpol.2013.03.026

Fabra, 2016, Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications, Food Hydrocoll., 55, 11, 10.1016/j.foodhyd.2015.10.026

Rao, S., Upadhyay, J., and Das, R. (2015). Fillers and Reinforcements for Advanced Nanocomposites, Woodhead Publishing.

Wen, 2016, Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging, Food Chem., 196, 996, 10.1016/j.foodchem.2015.10.043

Fabra, 2015, Development of multilayer corn starch-based food packaging structures containing β-carotene by means of the electro-hydrodynamic processing, Starch/Staerke, 68, 603, 10.1002/star.201500154

Schmidt, 2012, The emptying behavior of highly viscous liquids. Part I: Polymeric surfaces and plasma coatings, J. Adhes. Sci. Technol., 26, 2449, 10.1163/156856111X599553

Bellanger, 2014, Chemical and physical pathways for the preparation of superoleophobic surfaces and related wetting theories, Chem. Rev., 114, 2694, 10.1021/cr400169m

Nishino, 1999, The lowest surface free energy based on –CF3 alignment, Langmuir, 15, 4321, 10.1021/la981727s

Teshima, 2003, Ultra-Water-Repellent poly(ethylene terephthalate) substrates, Langmuir, 19, 10624, 10.1021/la034265d

Teshima, 2005, Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating, Appl. Surf. Sci., 244, 619, 10.1016/j.apsusc.2004.10.143

(2016, February 23). LiquiGlide. Available online: http://liquiglide.com.

Smith, 2013, Droplet mobility on lubricant-impregnated surfaces, Soft Matter, 9, 1772, 10.1039/C2SM27032C

Loibl, 2012, The emptying behaviour of highly viscous liquids. Part II: Development of test methods and evaluation of untreated and coated films, J. Adhes. Sci. Technol., 26, 2469, 10.1163/156856111X610117

Merck (2015). Merck Presents Organic Photovoltaic Materials at Expo 2015 in Milan, Merck KGaA.

Belectric (2015). Gray Modules: New Dimension in Organic Photovoltaics for Buildings, BELECTRIC OPV GmbH.

SCU (2015). Science for Environment Policy, the University of the West of England.

Brongersma, 2014, Light management for photovoltaics using high-index nanostructures, Nat. Mater., 13, 451, 10.1038/nmat3921

Li, 2005, High-Efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater., 4, 864, 10.1038/nmat1500

Kim, 2006, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mater., 18, 572, 10.1002/adma.200501825

Wang, 2008, High-Performance polymer heterojunction solar cells of a polysilafluorene derivative, Appl. Phys. Lett., 92, 33307, 10.1063/1.2836266

Reese, 2008, Pathways for the degradation of organic photovoltaic p3ht: Pcbm based devices, Sol. Energy Mater. Sol. C, 92, 746, 10.1016/j.solmat.2008.01.020

Pei, 2011, Efficiency enhancement of polymer solar cells by incorporating a self-assembled layer of silver nanodisks, Sol. Energy Mater. Sol. C, 95, 3281, 10.1016/j.solmat.2011.07.007

Chen, 2009, Plasmonic-Enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles, Appl. Phys. Lett., 95, 013305, 10.1063/1.3174914

Tang, 2014, Plasmonic-Enhanced crystalline silicon/organic heterojunction cells by incorporating gold nanoparticles, Phys. Status Solidi A, 211, 1179, 10.1002/pssa.201330446

Howarter, 2008, Self-Cleaning and next generation anti-fog surfaces and coatings, Macromol. Rapid Commun., 29, 455, 10.1002/marc.200700733

Gray, A. (2016, February 18). Self-Cleaning Hydrophobic Nano Coating for Solar Panel Glass Generating Great Results for Nanoshell. Available online: http://www.pv-magazine.com/services/press-releases/details/beitrag/self-cleaning-hydrophobic-nano-coating-for-solar-panel-glass-generating-great-results-for-nanoshell_100005577/#ixzz3Sr9qqsGv.

Friday, L. (2016, February 18). Self-Cleaning System Boosts Efficiency of Solar Panels. Available online: http://www.bu.edu/today/2014/self-cleaning-system-boosts-efficiency-of-solar-panels/.

Bullis, K. (2016, February 18). Self-Cleaning Solar Panels. Available online: http://www.technologyreview.com/news/420524/self-cleaning-solar-panels/.

Zhao, 2015, Effects of damkholer number of evaporation on the morphology of active layer and the performance of organic heterojunction solar cells fabricated by electrospray method, Sol. Energy Mater. Sol. C, 134, 140, 10.1016/j.solmat.2014.11.029

Yoon, 2016, Electrostatic spray deposition of transparent tungsten oxide thin-film photoanodes for solar water splitting, Catal. Today, 260, 89, 10.1016/j.cattod.2015.03.037

Liu, 2015, Stacked graphene-TiO2 photoanode via electrospray deposition for highly efficient dye-sensitized solar cells, Organ. Electron. Phys. Mater. Appl., 23, 158

Ranjgar, 2013, Characterization and optical absorption properties of plasmonic nanostructured thin films, Armen. J. Phys., 6, 198

Pavlidou, 2008, A review on polymer-layered silicate nanocomposites, Prog. Polym. Sci., 33, 1119, 10.1016/j.progpolymsci.2008.07.008

Kotal, 2015, Polymer nanocomposites from modified clays: Recent advances and challenges, Prog. Polym. Sci., 51, 127, 10.1016/j.progpolymsci.2015.10.001

International Organization for Standardization (ISO) (2011). Nanotechnologies—Nanomaterial Risk Evaluation, International Organization for Standardization.

Poland, C.A., Read, S.A.K., Varet, J., Carse, G., Christensen, F.M., and Hankin, S.M. (2013). Dermal Absorption of Nanomaterials, Danish Ministry of the Environment.

Bott, 2017, Critical review of the migration potential of nanoparticles in food contact plastics, Trends Food Sci. Technol., 63, 39, 10.1016/j.tifs.2017.01.011

Duncan, 2015, Release of engineered nanomaterials from polymer nanocomposites: The effect of matrix degradation, ACS Appl. Mater. Interfaces, 7, 20, 10.1021/am5062757

Duncan, 2015, Release of engineered nanomaterials from polymer nanocomposites: Diffusion, dissolution, and desorption, ACS Appl. Mater. Interfaces, 7, 2, 10.1021/am5062745

Heitbrink, W.A., Lo, L.-M., and Farwick, D.R. (2012). Evaluation of Enclosing Hood and Downflow Room for Nanocomposite Manufacturing.

Heitbrink, W., Lo, L.-M., and Garcia, A. (2013). Case Study: Particle Emissions from the Processes of Machining Nanocomposites.

Nowack, 2013, Potential release scenarios for carbon nanotubes used in composites, Environ. Int., 59, 1, 10.1016/j.envint.2013.04.003

Froggett, 2014, A review and perspective of existing research on the release of nanomaterials from solid nanocomposites, Part. Fibre Toxicol., 11, 17, 10.1186/1743-8977-11-17

Methner, 2012, Evaluation of the potential airborne release of carbon nanofibers during the preparation, grinding, and cutting of epoxy-based nanocomposite material, J. Occup. Environ. Hyg., 9, 308, 10.1080/15459624.2012.670790

Ogura, 2013, Potential release of carbon nanotubes from their composites during grinding, J. Phys. Conf. Ser., 429, 012049, 10.1088/1742-6596/429/1/012049

Bello, 2009, Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes, J. Nanopart. Res., 11, 231, 10.1007/s11051-008-9499-4

Lo, L.-M., Dunn, K.H., Hammond, D., Marlow, D., Topmiller, J., Tsai, C.S.J., Ellenbecker, M., and Huang, C.-C. (2012). Evaluation of Engineering Controls in a Manufacturing Facility Producing Carbon Nanotube-Based Products.

Bello, 2010, Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites, Int. J. Occup. Environ. Health, 16, 434, 10.1179/oeh.2010.16.4.434

Wohlleben, 2011, On the lifecycle of nanocomposites: Comparing released fragments and their in vivo hazards from three release mechanisms and four nanocomposites, Small, 7, 2384, 10.1002/smll.201002054

Schlagenhauf, 2015, Carbon nanotubes released from an epoxy-based nanocomposite: Quantification and particle toxicity, Environ. Sci. Technol., 49, 10616, 10.1021/acs.est.5b02750

Schlagenhauf, 2015, Weathering of a carbon nanotube/epoxy nanocomposite under uv light and in water bath: Impact on abraded particles, Nanoscale, 7, 18524, 10.1039/C5NR05387K

Cena, 2011, Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites, J. Occup. Environ. Hyg., 8, 86, 10.1080/15459624.2011.545943

Bernard, 2011, Fate of graphene in polymer nanocomposite exposed to UV radiation, J. Phys., 304, 012063

Wohlleben, 2013, Elastic CNT-polyurethane nanocomposite: Synthesis, performance and assessment of fragments released during use, Nanoscale, 5, 369, 10.1039/C2NR32711B

Hamilton, 2013, Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology, Part. Fibre Toxicol., 10, 57, 10.1186/1743-8977-10-57

Strauss, 2013, Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black, Part. Fibre Toxicol., 10, 23, 10.1186/1743-8977-10-23

Grosse, 2014, Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes, Lancet Oncol., 15, 1427, 10.1016/S1470-2045(14)71109-X

Koponen, 2009, Sanding dust from nanoparticle-containing paints: Physical characterisation, J. Phys., 151, 012048