Review on practical photoacoustic microscopy

Photoacoustics - Tập 15 - Trang 100141 - 2019
Seungwan Jeon1, Jongbeom Kim1, Donghyun Lee1, Jin Woo Baik1, Chulhong Kim1
1Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea

Tài liệu tham khảo

Bell, 1880, Upon the production and reproduction of sound by light, J. Soc. Telegr. Eng., 9, 404 Wang, 2008, Tutorial on photoacoustic microscopy and computed tomography, IEEE J. Sel. Top. Quantum Electron., 14, 171, 10.1109/JSTQE.2007.913398 Jeon, 2013, Multimodal photoacoustic tomography, IEEE Trans. Multimedia, 15, 975, 10.1109/TMM.2013.2244203 Oraevsky, 1994, Laser-based optoacoustic imaging in biological tissues, Proc. SPIE A, 2134, 122 Kruger, 1994, Photoacoustic ultrasound, Med. Phys., 21, 127, 10.1118/1.597367 Kim, 2015, Photoacoustic imaging platforms for multimodal imaging, Ultrasonography, 34, 88, 10.14366/usg.14062 Hu, 2010, Photoacoustic imaging and characterization of the microvasculature, J. Biomed. Opt., 15, 10.1117/1.3281673 Zhang, 2006, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging, Nat. Biotechnol., 24, 848, 10.1038/nbt1220 Choi, 2018, Clinical photoacoustic imaging platforms, Biomed. Eng. Lett., 8, 139, 10.1007/s13534-018-0062-7 Kim, 2016, Programmable real-time clinical photoacoustic and ultrasound imaging system, Sci. Rep., 6, 35137, 10.1038/srep35137 Lee, 2014, In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source, Appl. Opt., 53, 3884, 10.1364/AO.53.003884 Flammer, 2002, The impact of ocular blood flow in glaucoma, Prog. Retin. Eye Res., 21, 359, 10.1016/S1350-9462(02)00008-3 Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013 Garcia-Uribe, 2015, Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer, Sci. Rep., 5, 15748, 10.1038/srep15748 Park, 2017, Contrast-enhanced dual mode imaging: photoacoustic imaging plus more, Biomed. Eng. Lett., 7, 121, 10.1007/s13534-016-0006-z Zhang, 2014, Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines, Nat. Nanotechnol., 9, 631, 10.1038/nnano.2014.130 Lee, 2017, Super-resolution visible photoactivated atomic force microscopy, Light: Sci. Appl., 6, 10.1038/lsa.2017.80 Kim, 2012, Objective-free optical-resolution photoacoustic microscopy, J. Biomed. Opt., 18, 10.1117/1.JBO.18.1.010501 Park, 2017, Real-time triple-modal photoacoustic, ultrasound, and magnetic resonance fusion imaging of humans, IEEE Trans. Med. Imaging, 36, 1912, 10.1109/TMI.2017.2696038 Bi, 2018, Photoacoustic microscopy for evaluating combretastatin A4 phosphate induced vascular disruption in orthotopic glioma, J. Biophotonics Oladipupo, 2011, VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting, Proc. Natl. Acad. Sci., 108, 13264, 10.1073/pnas.1101321108 Zhang, 2013, Label-free photoacoustic microscopy of cytochromes, J. Biomed. Opt., 18, 10.1117/1.JBO.18.2.020504 Wong, 2017, Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy, Sci. Adv., 3, 10.1126/sciadv.1602168 Kim, 2010, In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages, ACS Nano, 4, 4559, 10.1021/nn100736c Nasiriavanaki, 2014, High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain, Proc. Natl. Acad. Sci., 111, 21, 10.1073/pnas.1311868111 Jeon, 2017, In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach, Sci. Rep., 7, 4318, 10.1038/s41598-017-04334-z Silverman, 2010, High-resolution photoacoustic imaging of ocular tissues, Ultrasound Med. Biol., 36, 733, 10.1016/j.ultrasmedbio.2010.02.006 Moothanchery, 2017, Performance characterization of a switchable acoustic resolution and optical resolution photoacoustic microscopy system, Sensors, 17, 357, 10.3390/s17020357 Chuangsuwanich, 2018, Photoacoustic imaging of lamina cribrosa microcapillaries in porcine eyes, Appl. Opt., 57, 4865, 10.1364/AO.57.004865 Yao, 2012, Double-illumination photoacoustic microscopy, Opt. Lett., 37, 659, 10.1364/OL.37.000659 Shelton, 2010, Off-axis photoacoustic microscopy, IEEE Trans. Biomed. Eng., 57, 1835, 10.1109/TBME.2010.2043103 Jiao, 2009, Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography, Opt. Lett., 34, 2961, 10.1364/OL.34.002961 Shelton, 2014, Volumetric imaging of erythrocytes using label‐free multiphoton photoacoustic microscopy, J. Biophotonics, 7, 834, 10.1002/jbio.201300059 Zhang, 2006, Imaging acute thermal burns by photoacoustic microscopy, J. Biomed. Opt., 11, 10.1117/1.2355667 Maslov, 2005, In vivo dark-field reflection-mode photoacoustic microscopy, Opt. Lett., 30, 625, 10.1364/OL.30.000625 Jeon, 2016, Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo, Med. Biol. Eng. Comput., 54, 283, 10.1007/s11517-014-1182-6 Maslov, 2008, Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries, Opt. Lett., 33, 929, 10.1364/OL.33.000929 Hu, 2011, Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed, Opt. Lett., 36, 1134, 10.1364/OL.36.001134 Park, 2016, Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy, J. Biomed. Opt., 21, 10.1117/1.JBO.21.3.036010 Jeon, 2016, In vivo switchable optical-and acoustic-resolution photoacoustic microscopy, Photons Plus Ultrasound: Imaging Sens., 9708 Xing, 2013, Integrated optical-and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle, Opt. Lett., 38, 52, 10.1364/OL.38.000052 Zhang, 2012, Reflection-mode submicron-resolution in vivo photoacoustic microscopy, J. Biomed. Opt., 17, 10.1117/1.JBO.17.2.020501 Zhang, 2010, Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo, Opt. Lett., 35, 3195, 10.1364/OL.35.003195 Danielli, 2014, Label-free photoacoustic nanoscopy, J. Biomed. Opt., 19, 10.1117/1.JBO.19.8.086006 Song, 2014, Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution, Biomed. Opt. Express, 5, 4235, 10.1364/BOE.5.004235 Liu, 2019, The integrated high-resolution reflection-mode photoacoustic and fluorescence confocal microscopy, Photoacoustics, 14, 12, 10.1016/j.pacs.2019.02.001 Park, 2018, Reflection‐mode switchable subwavelength bessel‐beam and Gaussian‐beam photoacoustic microscopy in vivo, J. Biophotonics Pierrat, 2005, Spatial coherence in strongly scattering media, JOSA A, 22, 2329, 10.1364/JOSAA.22.002329 Vallet, 2014, Enhancement of photoacoustic imaging quality by using CMUT technology: experimental study, 1296 Yao, 2014, Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.014302 Yao, 2016, Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe, Nat. Methods, 13, 67, 10.1038/nmeth.3656 Wang, 2014, Grueneisen relaxation photoacoustic microscopy, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.174301 Liu, 2018, Label-free cell nuclear imaging by Grüneisen relaxation photoacoustic microscopy, Opt. Lett., 43, 947, 10.1364/OL.43.000947 Cai, 2018, Dual-view photoacoustic microscopy for quantitative cell nuclear imaging, Opt. Lett., 43, 4875, 10.1364/OL.43.004875 Preibisch, 2014, Efficient Bayesian-based multiview deconvolution, Nat. Methods, 11, 645, 10.1038/nmeth.2929 Smith, 2009, Bioimaging: second window for in vivo imaging, Nat. Nanotechnol., 4, 710, 10.1038/nnano.2009.326 Park, 2018, Bi 2 Se 3 nanoplates for contrast-enhanced photoacoustic imaging at 1064 nm, Nanoscale, 10, 20548, 10.1039/C8NR05672B Periyasamy, 2019, 1064 nm acoustic resolution photoacoustic microscopy, J. Biophotonics, 10.1002/jbio.201800357 Hai, 2014, Near-infrared optical-resolution photoacoustic microscopy, Opt. Lett., 39, 5192, 10.1364/OL.39.005192 Jiang, 2016, Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries, Opt. Express, 24, 20167, 10.1364/OE.24.020167 Shi, 2015, Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field, J. Biomed. Opt., 20, 10.1117/1.JBO.20.11.116002 Yeh, 2014, Microvascular quantification based on contour-scanning photoacoustic microscopy, J. Biomed. Opt., 19, 10.1117/1.JBO.19.9.096011 Kim, 2017, Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids, Lab Chip, 17, 4031, 10.1039/C7LC00759K Mermillod-Blondin, 2008, High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens, Opt. Lett., 33, 2146, 10.1364/OL.33.002146 Zong, 2015, Large-field high-resolution two-photon digital scanned light-sheet microscopy, Cell Res., 25, 254, 10.1038/cr.2014.124 Dean, 2014, Uniform and scalable light-sheets generated by extended focusing, Opt. Express, 22, 26141, 10.1364/OE.22.026141 Theriault, 2014, TAG lens: revolutionizing optical microscopy with ultra-high speed variable focus, Microsc. Microanal., 20, 1092, 10.1017/S1431927614007181 Yang, 2017, Fast axial-scanning photoacoustic microscopy using tunable acoustic gradient lens, Opt. Express, 25, 7349, 10.1364/OE.25.007349 Yang, 2017, Multifocus optical-resolution photoacoustic microscope using ultrafast axial scanning of single laser pulse, Opt. Express, 25, 28192, 10.1364/OE.25.028192 Yang, 2017, Motionless volumetric photoacoustic microscopy with spatially invariant resolution, Nat. Commun., 8, 780, 10.1038/s41467-017-00856-2 Zhang, 2015, Single-pixel imaging by means of Fourier spectrum acquisition, Nat. Commun., 6, 6225, 10.1038/ncomms7225 Li, 2006, Improved in vivo photoacoustic microscopy based on a virtual-detector concept, Opt. Lett., 31, 474, 10.1364/OL.31.000474 Deng, 2011, Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy, J. Appl. Phys., 109, 10.1063/1.3585828 Turner, 2014, Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique, Opt. Lett., 39, 3390, 10.1364/OL.39.003390 Deng, 2012, Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy, Opt. Express, 20, 7555, 10.1364/OE.20.007555 Jeon, 2018, A novel 2D synthetic aperture focusing technique for acoustic-resolution photoacoustic microscopy, IEEE Trans. Med. Imaging Wang, 2011, Fast voice-coil scanning optical-resolution photoacoustic microscopy, Opt. Lett., 36, 139, 10.1364/OL.36.000139 Wang, 2013, Single-cell label-free photoacoustic flowoxigraphy in vivo, Proc. Natl. Acad. Sci., 110, 5759, 10.1073/pnas.1215578110 Rao, 2011, Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution, Opt. Lett., 36, 1137, 10.1364/OL.36.001137 Xie, 2009, Laser-scanning optical-resolution photoacoustic microscopy, Opt. Lett., 34, 1771, 10.1364/OL.34.001771 Yao, 2012, Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror, J. Biomed. Opt., 17, 10.1117/1.JBO.17.8.080505 Kim, 2015, Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner, Sci. Rep., 5, 7932, 10.1038/srep07932 Lin, 2016, Handheld optical-resolution photoacoustic microscopy, J. Biomed. Opt., 22, 10.1117/1.JBO.22.4.041002 Park, 2017, Handheld photoacoustic microscopy probe, Sci. Rep., 7, 13359, 10.1038/s41598-017-13224-3 Chen, 2018, Ultracompact high-resolution photoacoustic microscopy, Opt. Lett., 43, 1615, 10.1364/OL.43.001615 Yuan, 2012, Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer, Appl. Phys. Lett., 100, 10.1063/1.3675907 Jin, 2017, Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging, Opt. Lett., 42, 4434, 10.1364/OL.42.004434 Qin, 2018, Large-field-of-view optical resolution photoacoustic microscopy, Opt. Express, 26, 4271, 10.1364/OE.26.004271 Kim, 2016, High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid, Sci. Rep., 6, 34803, 10.1038/srep34803 Lan, 2018, High-speed widefield photoacoustic microscopy of small-animal hemodynamics, Biomed. Opt. Express, 9, 4689, 10.1364/BOE.9.004689 Song, 2011, Multifocal optical-resolution photoacoustic microscopy in vivo, Opt. Lett., 36, 1236, 10.1364/OL.36.001236 Li, 2013, Reflection-mode multifocal optical-resolution photoacoustic microscopy, J. Biomed. Opt., 18, 10.1117/1.JBO.18.3.030501 Xia, 2013, Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy, Opt. Lett., 38, 5236, 10.1364/OL.38.005236 Zhang, 2008, Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues, Appl. Opt., 47, 561, 10.1364/AO.47.000561 Zhang, 2009, In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy, Phys. Med. Biol., 54, 1035, 10.1088/0031-9155/54/4/014 Laufer, 2012, In vivo photoacoustic imaging of mouse embryos, J. Biomed. Opt., 17, 10.1117/1.JBO.17.6.061220 Huynh, 2016, Photoacoustic imaging using an 8-beam Fabry-Perot scanner, Photons Plus Ultrasound: Imaging Sens., 9708 Plumb, 2018, Rapid volumetric photoacoustic tomographic imaging with a Fabry-Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli, Eur. Radiol., 28, 1037, 10.1007/s00330-017-5080-9 Huynh, 2017, Sub-sampled Fabry-Perot photoacoustic scanner for fast 3D imaging, Photons Plus Ultrasound: Imaging Sens., 10064 Ansari, 2017, All-optical endoscopic probe for high resolution 3D photoacoustic tomography, Photons Plus Ultrasound: Imaging Sens., 10064 Ansari, 2018, All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy, Light Sci. Appl., 7, 75, 10.1038/s41377-018-0070-5 Payne, 2003, Optoacoustic determination of optical attenuation depth using interferometric detection, J. Biomed. Opt., 8, 264, 10.1117/1.1559731 Payne, 2003, Optoacoustic tomography using time-resolved interferometric detection of surface displacement, J. Biomed. Opt., 8, 273, 10.1117/1.1559727 Wang, 2011, Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector, Opt. Lett., 36, 3975, 10.1364/OL.36.003975 Rousseau, 2012, Non-contact photoacoustic tomography and ultrasonography for tissue imaging, Biomed. Opt. Express, 3, 16, 10.1364/BOE.3.000016 Hochreiner, 2013, Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification, Biomed. Opt. Express, 4, 2322, 10.1364/BOE.4.002322 Chen, 2015, Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer, Appl. Phys. Lett., 106, 10.1063/1.4906748 Berer, 2010, Remote photoacoustic imaging on solid material using a two-wave mixing interferometer, Opt. Lett., 35, 4151, 10.1364/OL.35.004151 Hajireza, 2017, Non-interferometric photoacoustic remote sensing microscopy, Light Sci. Appl., 6, 10.1038/lsa.2016.278 Reza, 2018, Deep non-contact photoacoustic initial pressure imaging, Optica, 5, 814, 10.1364/OPTICA.5.000814 Cao, 2017, Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain, Neuroimage, 150, 77, 10.1016/j.neuroimage.2017.01.049 Ning, 2015, Ultrasound-aided multi-parametric photoacoustic microscopy of the mouse brain, Sci. Rep., 5, 18775, 10.1038/srep18775 Yao, 2015, High-speed label-free functional photoacoustic microscopy of mouse brain in action, Nat. Methods, 12, 407, 10.1038/nmeth.3336 Moothanchery, 2017, In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy, Biomed. Opt. Express, 8, 5483, 10.1364/BOE.8.005483 Kim, 2010, In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths, Chem. Rev., 110, 2756, 10.1021/cr900266s Jeon, 2014, Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers, Nanomedicine, 9, 1377, 10.2217/nnm.13.103 Erpelding, 2010, Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system, Radiology, 256, 102, 10.1148/radiol.10091772 Lee, 2015, Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines, Biomaterials, 73, 142, 10.1016/j.biomaterials.2015.09.023 Cai, 2016, Encapsulated conjugated oligomer nanoparticles for real‐time photoacoustic sentinel lymph node imaging and targeted photothermal therapy, Small, 12, 4873, 10.1002/smll.201600697 Roy, 2015, A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic‐resistant bacteria, Angew. Chem. Int. Ed., 54, 15152, 10.1002/anie.201507140 Lee, 2016, Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy, Theranostics, 6, 2196, 10.7150/thno.16923 Zhong, 2016, Imaging-guided photoacoustic drug release and synergistic chemo-photoacoustic therapy with paclitaxel-containing nanoparticles, J. Control. Release, 226, 77, 10.1016/j.jconrel.2016.02.010 Olson, 2007, Frozen section analysis for intraoperative margin assessment during breast-conserving surgery results in low rates of re-excision and local recurrence, Ann. Surg. Oncol., 14, 2953, 10.1245/s10434-007-9437-1 Cendán, 2005, Accuracy of intraoperative frozen-section analysis of breast cancer lumpectomy-bed margins, J. Am. Coll. Surg., 201, 194, 10.1016/j.jamcollsurg.2005.03.014 Imai, 2018, High-throughput ultraviolet photoacoustic microscopy with multifocal excitation, J. Biomed. Opt., 23, 10.1117/1.JBO.23.3.036007 Wong, 2017, Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy, Nat. Commun., 8, 1386, 10.1038/s41467-017-01649-3 Zabihian, 2015, In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies, Biomed. Opt. Express, 6, 3163, 10.1364/BOE.6.003163 Aguirre, 2017, Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy, Nat. Biomed. Eng., 1, 68, 10.1038/s41551-017-0068 Berezhnoi, 2018, Assessing hyperthermia‐induced vasodilation in human skin in vivo using optoacoustic mesoscopy, J. Biophotonics Lee, 2016, In vivo near infrared virtual intraoperative surgical photoacoustic optical coherence tomography, Sci. Rep., 6, 35176, 10.1038/srep35176 Lee, 2013, Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source, Appl. Opt., 52, 1824, 10.1364/AO.52.001824 Cai, 2012, Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography, Tissue Eng. Part C Methods, 19, 196, 10.1089/ten.tec.2012.0326 Song, 2016, Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo, Sci. Rep., 6, 32240, 10.1038/srep32240 Wang, 2010, Integrated photoacoustic and fluorescence confocal microscopy, IEEE Trans. Biomed. Eng., 57, 2576, 10.1109/TBME.2010.2059026 Ntziachristos, 2010, Current concepts and future perspectives on surgical optical imaging in cancer, J. Biomed. Opt., 15, 10.1117/1.3523364 Deán-Ben, 2017, Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice, Light Sci. Appl., 6, 10.1038/lsa.2016.247 Kang, 2015, Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy, Biomed. Opt. Express, 6, 4650, 10.1364/BOE.6.004650 George, 2018, A frequency‐domain non‐contact photoacoustic microscope based on an adaptive interferometer, J. Biophotonics, 10.1002/jbio.201700278