Review on practical photoacoustic microscopy
Tài liệu tham khảo
Bell, 1880, Upon the production and reproduction of sound by light, J. Soc. Telegr. Eng., 9, 404
Wang, 2008, Tutorial on photoacoustic microscopy and computed tomography, IEEE J. Sel. Top. Quantum Electron., 14, 171, 10.1109/JSTQE.2007.913398
Jeon, 2013, Multimodal photoacoustic tomography, IEEE Trans. Multimedia, 15, 975, 10.1109/TMM.2013.2244203
Oraevsky, 1994, Laser-based optoacoustic imaging in biological tissues, Proc. SPIE A, 2134, 122
Kruger, 1994, Photoacoustic ultrasound, Med. Phys., 21, 127, 10.1118/1.597367
Kim, 2015, Photoacoustic imaging platforms for multimodal imaging, Ultrasonography, 34, 88, 10.14366/usg.14062
Hu, 2010, Photoacoustic imaging and characterization of the microvasculature, J. Biomed. Opt., 15, 10.1117/1.3281673
Zhang, 2006, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging, Nat. Biotechnol., 24, 848, 10.1038/nbt1220
Choi, 2018, Clinical photoacoustic imaging platforms, Biomed. Eng. Lett., 8, 139, 10.1007/s13534-018-0062-7
Kim, 2016, Programmable real-time clinical photoacoustic and ultrasound imaging system, Sci. Rep., 6, 35137, 10.1038/srep35137
Lee, 2014, In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source, Appl. Opt., 53, 3884, 10.1364/AO.53.003884
Flammer, 2002, The impact of ocular blood flow in glaucoma, Prog. Retin. Eye Res., 21, 359, 10.1016/S1350-9462(02)00008-3
Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013
Garcia-Uribe, 2015, Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer, Sci. Rep., 5, 15748, 10.1038/srep15748
Park, 2017, Contrast-enhanced dual mode imaging: photoacoustic imaging plus more, Biomed. Eng. Lett., 7, 121, 10.1007/s13534-016-0006-z
Zhang, 2014, Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines, Nat. Nanotechnol., 9, 631, 10.1038/nnano.2014.130
Lee, 2017, Super-resolution visible photoactivated atomic force microscopy, Light: Sci. Appl., 6, 10.1038/lsa.2017.80
Kim, 2012, Objective-free optical-resolution photoacoustic microscopy, J. Biomed. Opt., 18, 10.1117/1.JBO.18.1.010501
Park, 2017, Real-time triple-modal photoacoustic, ultrasound, and magnetic resonance fusion imaging of humans, IEEE Trans. Med. Imaging, 36, 1912, 10.1109/TMI.2017.2696038
Bi, 2018, Photoacoustic microscopy for evaluating combretastatin A4 phosphate induced vascular disruption in orthotopic glioma, J. Biophotonics
Oladipupo, 2011, VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting, Proc. Natl. Acad. Sci., 108, 13264, 10.1073/pnas.1101321108
Zhang, 2013, Label-free photoacoustic microscopy of cytochromes, J. Biomed. Opt., 18, 10.1117/1.JBO.18.2.020504
Wong, 2017, Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy, Sci. Adv., 3, 10.1126/sciadv.1602168
Kim, 2010, In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages, ACS Nano, 4, 4559, 10.1021/nn100736c
Nasiriavanaki, 2014, High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain, Proc. Natl. Acad. Sci., 111, 21, 10.1073/pnas.1311868111
Jeon, 2017, In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach, Sci. Rep., 7, 4318, 10.1038/s41598-017-04334-z
Silverman, 2010, High-resolution photoacoustic imaging of ocular tissues, Ultrasound Med. Biol., 36, 733, 10.1016/j.ultrasmedbio.2010.02.006
Moothanchery, 2017, Performance characterization of a switchable acoustic resolution and optical resolution photoacoustic microscopy system, Sensors, 17, 357, 10.3390/s17020357
Chuangsuwanich, 2018, Photoacoustic imaging of lamina cribrosa microcapillaries in porcine eyes, Appl. Opt., 57, 4865, 10.1364/AO.57.004865
Yao, 2012, Double-illumination photoacoustic microscopy, Opt. Lett., 37, 659, 10.1364/OL.37.000659
Shelton, 2010, Off-axis photoacoustic microscopy, IEEE Trans. Biomed. Eng., 57, 1835, 10.1109/TBME.2010.2043103
Jiao, 2009, Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography, Opt. Lett., 34, 2961, 10.1364/OL.34.002961
Shelton, 2014, Volumetric imaging of erythrocytes using label‐free multiphoton photoacoustic microscopy, J. Biophotonics, 7, 834, 10.1002/jbio.201300059
Zhang, 2006, Imaging acute thermal burns by photoacoustic microscopy, J. Biomed. Opt., 11, 10.1117/1.2355667
Maslov, 2005, In vivo dark-field reflection-mode photoacoustic microscopy, Opt. Lett., 30, 625, 10.1364/OL.30.000625
Jeon, 2016, Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo, Med. Biol. Eng. Comput., 54, 283, 10.1007/s11517-014-1182-6
Maslov, 2008, Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries, Opt. Lett., 33, 929, 10.1364/OL.33.000929
Hu, 2011, Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed, Opt. Lett., 36, 1134, 10.1364/OL.36.001134
Park, 2016, Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy, J. Biomed. Opt., 21, 10.1117/1.JBO.21.3.036010
Jeon, 2016, In vivo switchable optical-and acoustic-resolution photoacoustic microscopy, Photons Plus Ultrasound: Imaging Sens., 9708
Xing, 2013, Integrated optical-and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle, Opt. Lett., 38, 52, 10.1364/OL.38.000052
Zhang, 2012, Reflection-mode submicron-resolution in vivo photoacoustic microscopy, J. Biomed. Opt., 17, 10.1117/1.JBO.17.2.020501
Zhang, 2010, Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo, Opt. Lett., 35, 3195, 10.1364/OL.35.003195
Danielli, 2014, Label-free photoacoustic nanoscopy, J. Biomed. Opt., 19, 10.1117/1.JBO.19.8.086006
Song, 2014, Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution, Biomed. Opt. Express, 5, 4235, 10.1364/BOE.5.004235
Liu, 2019, The integrated high-resolution reflection-mode photoacoustic and fluorescence confocal microscopy, Photoacoustics, 14, 12, 10.1016/j.pacs.2019.02.001
Park, 2018, Reflection‐mode switchable subwavelength bessel‐beam and Gaussian‐beam photoacoustic microscopy in vivo, J. Biophotonics
Pierrat, 2005, Spatial coherence in strongly scattering media, JOSA A, 22, 2329, 10.1364/JOSAA.22.002329
Vallet, 2014, Enhancement of photoacoustic imaging quality by using CMUT technology: experimental study, 1296
Yao, 2014, Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.014302
Yao, 2016, Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe, Nat. Methods, 13, 67, 10.1038/nmeth.3656
Wang, 2014, Grueneisen relaxation photoacoustic microscopy, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.174301
Liu, 2018, Label-free cell nuclear imaging by Grüneisen relaxation photoacoustic microscopy, Opt. Lett., 43, 947, 10.1364/OL.43.000947
Cai, 2018, Dual-view photoacoustic microscopy for quantitative cell nuclear imaging, Opt. Lett., 43, 4875, 10.1364/OL.43.004875
Preibisch, 2014, Efficient Bayesian-based multiview deconvolution, Nat. Methods, 11, 645, 10.1038/nmeth.2929
Smith, 2009, Bioimaging: second window for in vivo imaging, Nat. Nanotechnol., 4, 710, 10.1038/nnano.2009.326
Park, 2018, Bi 2 Se 3 nanoplates for contrast-enhanced photoacoustic imaging at 1064 nm, Nanoscale, 10, 20548, 10.1039/C8NR05672B
Periyasamy, 2019, 1064 nm acoustic resolution photoacoustic microscopy, J. Biophotonics, 10.1002/jbio.201800357
Hai, 2014, Near-infrared optical-resolution photoacoustic microscopy, Opt. Lett., 39, 5192, 10.1364/OL.39.005192
Jiang, 2016, Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries, Opt. Express, 24, 20167, 10.1364/OE.24.020167
Shi, 2015, Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field, J. Biomed. Opt., 20, 10.1117/1.JBO.20.11.116002
Yeh, 2014, Microvascular quantification based on contour-scanning photoacoustic microscopy, J. Biomed. Opt., 19, 10.1117/1.JBO.19.9.096011
Kim, 2017, Dual-mode reconfigurable focusing using the interface of aqueous and dielectric liquids, Lab Chip, 17, 4031, 10.1039/C7LC00759K
Mermillod-Blondin, 2008, High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens, Opt. Lett., 33, 2146, 10.1364/OL.33.002146
Zong, 2015, Large-field high-resolution two-photon digital scanned light-sheet microscopy, Cell Res., 25, 254, 10.1038/cr.2014.124
Dean, 2014, Uniform and scalable light-sheets generated by extended focusing, Opt. Express, 22, 26141, 10.1364/OE.22.026141
Theriault, 2014, TAG lens: revolutionizing optical microscopy with ultra-high speed variable focus, Microsc. Microanal., 20, 1092, 10.1017/S1431927614007181
Yang, 2017, Fast axial-scanning photoacoustic microscopy using tunable acoustic gradient lens, Opt. Express, 25, 7349, 10.1364/OE.25.007349
Yang, 2017, Multifocus optical-resolution photoacoustic microscope using ultrafast axial scanning of single laser pulse, Opt. Express, 25, 28192, 10.1364/OE.25.028192
Yang, 2017, Motionless volumetric photoacoustic microscopy with spatially invariant resolution, Nat. Commun., 8, 780, 10.1038/s41467-017-00856-2
Zhang, 2015, Single-pixel imaging by means of Fourier spectrum acquisition, Nat. Commun., 6, 6225, 10.1038/ncomms7225
Li, 2006, Improved in vivo photoacoustic microscopy based on a virtual-detector concept, Opt. Lett., 31, 474, 10.1364/OL.31.000474
Deng, 2011, Two-dimensional synthetic-aperture focusing technique in photoacoustic microscopy, J. Appl. Phys., 109, 10.1063/1.3585828
Turner, 2014, Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique, Opt. Lett., 39, 3390, 10.1364/OL.39.003390
Deng, 2012, Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy, Opt. Express, 20, 7555, 10.1364/OE.20.007555
Jeon, 2018, A novel 2D synthetic aperture focusing technique for acoustic-resolution photoacoustic microscopy, IEEE Trans. Med. Imaging
Wang, 2011, Fast voice-coil scanning optical-resolution photoacoustic microscopy, Opt. Lett., 36, 139, 10.1364/OL.36.000139
Wang, 2013, Single-cell label-free photoacoustic flowoxigraphy in vivo, Proc. Natl. Acad. Sci., 110, 5759, 10.1073/pnas.1215578110
Rao, 2011, Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution, Opt. Lett., 36, 1137, 10.1364/OL.36.001137
Xie, 2009, Laser-scanning optical-resolution photoacoustic microscopy, Opt. Lett., 34, 1771, 10.1364/OL.34.001771
Yao, 2012, Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror, J. Biomed. Opt., 17, 10.1117/1.JBO.17.8.080505
Kim, 2015, Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner, Sci. Rep., 5, 7932, 10.1038/srep07932
Lin, 2016, Handheld optical-resolution photoacoustic microscopy, J. Biomed. Opt., 22, 10.1117/1.JBO.22.4.041002
Park, 2017, Handheld photoacoustic microscopy probe, Sci. Rep., 7, 13359, 10.1038/s41598-017-13224-3
Chen, 2018, Ultracompact high-resolution photoacoustic microscopy, Opt. Lett., 43, 1615, 10.1364/OL.43.001615
Yuan, 2012, Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer, Appl. Phys. Lett., 100, 10.1063/1.3675907
Jin, 2017, Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging, Opt. Lett., 42, 4434, 10.1364/OL.42.004434
Qin, 2018, Large-field-of-view optical resolution photoacoustic microscopy, Opt. Express, 26, 4271, 10.1364/OE.26.004271
Kim, 2016, High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid, Sci. Rep., 6, 34803, 10.1038/srep34803
Lan, 2018, High-speed widefield photoacoustic microscopy of small-animal hemodynamics, Biomed. Opt. Express, 9, 4689, 10.1364/BOE.9.004689
Song, 2011, Multifocal optical-resolution photoacoustic microscopy in vivo, Opt. Lett., 36, 1236, 10.1364/OL.36.001236
Li, 2013, Reflection-mode multifocal optical-resolution photoacoustic microscopy, J. Biomed. Opt., 18, 10.1117/1.JBO.18.3.030501
Xia, 2013, Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy, Opt. Lett., 38, 5236, 10.1364/OL.38.005236
Zhang, 2008, Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues, Appl. Opt., 47, 561, 10.1364/AO.47.000561
Zhang, 2009, In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy, Phys. Med. Biol., 54, 1035, 10.1088/0031-9155/54/4/014
Laufer, 2012, In vivo photoacoustic imaging of mouse embryos, J. Biomed. Opt., 17, 10.1117/1.JBO.17.6.061220
Huynh, 2016, Photoacoustic imaging using an 8-beam Fabry-Perot scanner, Photons Plus Ultrasound: Imaging Sens., 9708
Plumb, 2018, Rapid volumetric photoacoustic tomographic imaging with a Fabry-Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli, Eur. Radiol., 28, 1037, 10.1007/s00330-017-5080-9
Huynh, 2017, Sub-sampled Fabry-Perot photoacoustic scanner for fast 3D imaging, Photons Plus Ultrasound: Imaging Sens., 10064
Ansari, 2017, All-optical endoscopic probe for high resolution 3D photoacoustic tomography, Photons Plus Ultrasound: Imaging Sens., 10064
Ansari, 2018, All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy, Light Sci. Appl., 7, 75, 10.1038/s41377-018-0070-5
Payne, 2003, Optoacoustic determination of optical attenuation depth using interferometric detection, J. Biomed. Opt., 8, 264, 10.1117/1.1559731
Payne, 2003, Optoacoustic tomography using time-resolved interferometric detection of surface displacement, J. Biomed. Opt., 8, 273, 10.1117/1.1559727
Wang, 2011, Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector, Opt. Lett., 36, 3975, 10.1364/OL.36.003975
Rousseau, 2012, Non-contact photoacoustic tomography and ultrasonography for tissue imaging, Biomed. Opt. Express, 3, 16, 10.1364/BOE.3.000016
Hochreiner, 2013, Non-contact photoacoustic imaging using a fiber based interferometer with optical amplification, Biomed. Opt. Express, 4, 2322, 10.1364/BOE.4.002322
Chen, 2015, Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer, Appl. Phys. Lett., 106, 10.1063/1.4906748
Berer, 2010, Remote photoacoustic imaging on solid material using a two-wave mixing interferometer, Opt. Lett., 35, 4151, 10.1364/OL.35.004151
Hajireza, 2017, Non-interferometric photoacoustic remote sensing microscopy, Light Sci. Appl., 6, 10.1038/lsa.2016.278
Reza, 2018, Deep non-contact photoacoustic initial pressure imaging, Optica, 5, 814, 10.1364/OPTICA.5.000814
Cao, 2017, Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain, Neuroimage, 150, 77, 10.1016/j.neuroimage.2017.01.049
Ning, 2015, Ultrasound-aided multi-parametric photoacoustic microscopy of the mouse brain, Sci. Rep., 5, 18775, 10.1038/srep18775
Yao, 2015, High-speed label-free functional photoacoustic microscopy of mouse brain in action, Nat. Methods, 12, 407, 10.1038/nmeth.3336
Moothanchery, 2017, In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy, Biomed. Opt. Express, 8, 5483, 10.1364/BOE.8.005483
Kim, 2010, In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths, Chem. Rev., 110, 2756, 10.1021/cr900266s
Jeon, 2014, Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers, Nanomedicine, 9, 1377, 10.2217/nnm.13.103
Erpelding, 2010, Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system, Radiology, 256, 102, 10.1148/radiol.10091772
Lee, 2015, Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines, Biomaterials, 73, 142, 10.1016/j.biomaterials.2015.09.023
Cai, 2016, Encapsulated conjugated oligomer nanoparticles for real‐time photoacoustic sentinel lymph node imaging and targeted photothermal therapy, Small, 12, 4873, 10.1002/smll.201600697
Roy, 2015, A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic‐resistant bacteria, Angew. Chem. Int. Ed., 54, 15152, 10.1002/anie.201507140
Lee, 2016, Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy, Theranostics, 6, 2196, 10.7150/thno.16923
Zhong, 2016, Imaging-guided photoacoustic drug release and synergistic chemo-photoacoustic therapy with paclitaxel-containing nanoparticles, J. Control. Release, 226, 77, 10.1016/j.jconrel.2016.02.010
Olson, 2007, Frozen section analysis for intraoperative margin assessment during breast-conserving surgery results in low rates of re-excision and local recurrence, Ann. Surg. Oncol., 14, 2953, 10.1245/s10434-007-9437-1
Cendán, 2005, Accuracy of intraoperative frozen-section analysis of breast cancer lumpectomy-bed margins, J. Am. Coll. Surg., 201, 194, 10.1016/j.jamcollsurg.2005.03.014
Imai, 2018, High-throughput ultraviolet photoacoustic microscopy with multifocal excitation, J. Biomed. Opt., 23, 10.1117/1.JBO.23.3.036007
Wong, 2017, Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy, Nat. Commun., 8, 1386, 10.1038/s41467-017-01649-3
Zabihian, 2015, In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies, Biomed. Opt. Express, 6, 3163, 10.1364/BOE.6.003163
Aguirre, 2017, Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy, Nat. Biomed. Eng., 1, 68, 10.1038/s41551-017-0068
Berezhnoi, 2018, Assessing hyperthermia‐induced vasodilation in human skin in vivo using optoacoustic mesoscopy, J. Biophotonics
Lee, 2016, In vivo near infrared virtual intraoperative surgical photoacoustic optical coherence tomography, Sci. Rep., 6, 35176, 10.1038/srep35176
Lee, 2013, Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source, Appl. Opt., 52, 1824, 10.1364/AO.52.001824
Cai, 2012, Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography, Tissue Eng. Part C Methods, 19, 196, 10.1089/ten.tec.2012.0326
Song, 2016, Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo, Sci. Rep., 6, 32240, 10.1038/srep32240
Wang, 2010, Integrated photoacoustic and fluorescence confocal microscopy, IEEE Trans. Biomed. Eng., 57, 2576, 10.1109/TBME.2010.2059026
Ntziachristos, 2010, Current concepts and future perspectives on surgical optical imaging in cancer, J. Biomed. Opt., 15, 10.1117/1.3523364
Deán-Ben, 2017, Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice, Light Sci. Appl., 6, 10.1038/lsa.2016.247
Kang, 2015, Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy, Biomed. Opt. Express, 6, 4650, 10.1364/BOE.6.004650
George, 2018, A frequency‐domain non‐contact photoacoustic microscope based on an adaptive interferometer, J. Biophotonics, 10.1002/jbio.201700278