Review on gold nanoparticles and their applications

Minakshi Das1, Kyu Hwan Shim1, Seong Soo A. An1, Dong Kee Yi1
1Department of BioNano Technology, Gachon University, Seongnam, Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cai, W., Gao, T., Hong, H. & Sun, J. Application of Au nanoparticles in cancer nanotechnology. Nanotech. Sci. Appl. 1, 17–32 (2008).

Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 4, MR17–MR72 (2007).

Kawasaki, E. S. & Player, A. Nanotechnology, nanomedicine and the development of new, effective therapies for cancer. Nanomedicine 1, 101–109 (2005).

Horton, M. A. & Khan, A. Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology. Nanomedicine 2, 42–48 (2006).

Thayer, A. M. Building up nanotech research. Chem. Eng. News 85, 15–21 (2007).

Sharma, V., Park, K. & Srinivasarao, M. Colloidal dispersion of Au nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater. Sci. Eng. R 65, 1–38 (2009).

Faraday, M. Michael Faraday’s recognition of ruby Au: the birth of modern nanotechnology. Au Bulletin 40, 267–269 (2007).

Faraday, M. The Bakerian Lecture: Experimental Relations of Au (and Other Metals) to Light. Phil. Trans. R. Soc. Lond. 147, 145–181 (1857).

Zsigmondy, R. & Norton, J. F. The Chemistry of Colloids (John Wiley & Sons, Inc., New York, 1917).

Zsigmondy, R. & Alexander, J. Colloids and the Ultramicroscope: A manual of colloid chemistry and ultramicroscope, 1st Edn (John Wiley & Sons, Inc., New York, 1909).

Svedberg, T. The Formation of Colloids (J. & A. Churchill, London, 1921).

Svedberg, T. & Tiselius, A. Colloid Chemistry, 2nd Edn (The Chemical Catalog Company Inc., New York, 1928).

Svedberg, T. & Pedersen, K. O. The Ultracentrifuge (Johnson Reprint Corp., 1959).

Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen Der. Physik 330, 377–445 (1908).

Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

Baptista, P. et al. Au nanoparticles for the development of clinical diagnosis methods. Anal. Bioanal. Chem. 391, 943–950 (2008).

Gupta, S., Huda, S., Kilpatrick, P. K. & Velev, O. D. Characterization and optimization of Au nanoparticle-based silver-enhanced immunoassays. Anal. Chem. 79, 3810–3820 (2007).

Liu, X. et al. A one-step homogeneous immunoassay for cancer biomarker detection using Au nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 130, 2780–2782 (2008).

Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using Au nanoparticles. Laser Med. Sci. 23, 217–228 (2008).

Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

Luo, P. G. & Stutzenberger, F. J. Nanotechnology in the detection and control of microorganisms. Adv. Appl. Microbiol. 63, 145–181 (2008).

Han, G., Ghosh, P. & Rotello, V. M. Functionalized Au nanoparticles for drug delivery. Nanomedicine 2, 113–123 (2007).

Aaron, J. et al. Polarization microscopy with stellated Au nanoparticles for robust monitoring of molecular assemblies and single biomolecules. Opt. Express. 16, 2153–2167 (2008).

Zharov, V., Galanzha, E., Shashkov, E., Khlebtsov, N. & Tuchin, V. In vivo photo acoustic flow cytometry for monitoring circulating single cancer cells and contrast agents. Opt. Lett. 31, 3623–3625 (2006).

Pissuwan, D., Niidome, T. & Cortie, M. B. The forthcoming application of Au nanoparticles in drug and gene delivery systems. J. Control. Release 149, 65–71 (2011).

Pissuwan, D., Valenzuela, S. M. & Cortie, M. B. Therapeutic possibilities of plasmonically heated Au nanoparticles. Trends Biotechnol. 24, 62–67 (2006).

Hu, M. et al. Au nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 38, 1084–1094 (2006).

Daniel, M. C. & Astruc, D. Au nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 35, 293–346 (2004).

Pissuwan, D., Valenzuela, S. M. & Cortie, M. B. Prospects for Au nanorod particles in diagnostic and therapeutic applications. Biotechnol. Gen. Eng. Rev. 25, 93–112 (2008).

Tong, L., Wei, Q., Wei, A. & Cheng, J.-X. Au nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 85, 21–32 (2009).

Ghosh, P., Han, G., De, M., Kim, C. K. & Rotello, V. M. Au nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008).

Chen, P. C., Mwakwari, S. C. & Oyelere, A. K. Au nanoparticles: from nanomedicine to nanosensing. Nanotech. Sci. Appl. 1, 45–66 (2008).

Skirtach, A. G. et al. Laser-induced release of encapsulated materials inside living cells. Angew. Chem. 45, 4728–4733 (2006).

Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymernanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

Gupta, P., Vermani, K. & Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569–579 (2002).

Sun, Y. & Xia, Y. Shape-controlled synthesis of Au and silver nanoparticles. Science 298, 2176–2179 (2002).

Wang, H., Brandl, D. W., Le, F., Nordlander, P. & Halas, N. J. Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006).

Nehl, C. L., Liao, H. & Hafner, J. H. Optical properties of star-shaped Au nanoparticles. Nano Lett. 6, 683–688 (2006).

Sun, Y. & Xia, Y. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 3, 1569–1572 (2003).

Glomm, W. R. Functionalized Au nanoparticles for applications in bionanotechnology. J. Disp. Sci. Technol. 26, 389–414 (2005).

Zhou, J., Ralston, J., Sedev, R. & Beattie, D. A. Functionalized Au nanoparticles: synthesis, structure and colloid stability. J. Colloid Interface Sci. 331, 251–262 (2008).

Mitamura, K. & Imae, T. Functionalization of Au nanorods toward their applications. Plasmonics 4, 23–30 (2009).

Edwards, p. p. & Thomas, J. M. Au in a metallic devided state-from faraday to present-day nanoscience. Angrew. Chem. Int. Ed. Engl. 46, 5480–5486 (2007).

Hunt, L. B. The true story of the purple of cassius: The birth of Au-based glass and enamel colours. Au Bull. 9, 134–139 (1976).

Encyclopedia, http://www.encyclopedia.com/topic/Richard_Zsigmondy.aspx (2008).

Svedberg, T. & Fåhraeus, R. A new direct method for the determination of the molecular weight of the proteins. J. Am. Chem. Soc. 48, 430–438 (1926).

Gray, G. W. The Ultracentrifuge. Scientific American 184, 42–51 (1951).

Stokes, G. G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc. 9, 8 (1856).

Adair, G. S. A critical study of the direct method of measuring the osmotic pressure of haemoglobin. Proc. R. Soc. Lond. B 98, 523 (1925).

Adair, G. S. The osmotic pressure of hemoglobin in the presence of salt. Proc. R. Soc. Lond. A 109A, 292–300 (1925).

Ostwald, W. An Introduction to Theoretical and Applied Colloid Chemistry, “the world of neglected dimensions (John Wiley & Sons, Inc., New York, 1917).

Stern, K. H. The liesegang phenomenon. Chem. Rev. 54, 79–99 (1954).

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse Au suspensions. Nature 241, 20–22 (1973).

Turkevich, J., Stevenson, P. C. & Hillier, J. The nucleation and growth processes in the synthesis of colloidal Au. Discuss Faraday Soc. 11, 55–75 (1951).

Giersig, M. & Mulvaney, P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–3413 (1993).

Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatized Au nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994).

Leff, D. V., Brandt, L. & Heath, J. R. Synthesis and characterization of hydrophobic, organically soluble Au nanocrystals functionalized with primary amines. Langmuir 12, 4723–4730 (1996).

Weare, W. W., Reed, S. M., Warner, M. G. & Hutchison, J. E. Improved synthesis of small (dCORE ∼1.5 nm) phosphine-stabilized Au nanoparticles. J. Am. Chem. Soc. 122, 12890–12891 (2000).

Hiramatsu, H. & Osterloh, F. E. A simple large-scale synthesis of nearly monodisperse Au and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 16, 2509–2511 (2004).

Esumi, K., Suzuki, A., Aihara, N., Usui, K. & Torigoe, K. Preparation of Au colloids with UV irradiation using dendrimers as stabilizer. Langmuir 14, 3157–3159 (1998).

Garcia, M. E., Baker, L. A. & Crooks, R. M. Preparation and characterization of dendrimer-Au colloid nanocomposites. Anal. Chem. 71, 256–258 (1999).

Kim, Y. G., Oh, S. K. & Crooks, R. M. Preparation and characterization of 1–2 nm dendrimer-encapsulated Au nanoparticles having very narrow size distributions. Chem. Mater. 16, 167–172 (2004).

Manna, A., Imae, T., Aoi, K., Okada, M. & Yogo, T. Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and Au particles. Chem. Mater. 13, 1674–1681 (2001).

Scott, R. W. J., Wilson, O. M. & Crooks, R. M. Synthesis, characterization, and applications of dendrimerencapsulated nanoparticles. J. Phys. Chem. B 109, 692–704 (2005).

Shi, X., Ganser, T. R., Sun, K., Balogh, L. P. & Baker, Jr. J. R. Characterization of crystalline dendrimerstabilized Au nanoparticles. Nanotechnology 17, 1072–1078 (2006).

Anshup, A. et al. Growth of Au nanoparticles in human cells. Langmuir 21, 11562–11567 (2005).

Martin, C. R. Nanomaterials: A membrane-based synthetic approach. Science 266, 1961–1966 (1994).

van der Zande, B. M. I., Boehmer, M. R., Fokkink, L. G. J. & Schonenberger, C. Aqueous gold sols and rod-shaped particles. J. Phys. Chem. B 101, 852–854 (1997).

Reetz, M. T. & Helbig, W. Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 116, 7401–7402 (1994).

Yu, Y.-Y., Chang, S.-S., Lee, C.-L. & Chris Wang, C. R. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661–6664 (1997).

Chang, S.-S., Shih, C.-W., Chen, C.-D., Lai, W.-C. & Chris Wang, C. R. The shape transition of gold nanorods. Langmuir 15, 701–709 (1999).

Jana, N. R., Gearheart, L. & Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389–1393 (2001).

Busbee, B. D., Obare, S.O. & Murphy, C. J. An improved synthesis of high aspect-ratio gold nanorods. Adv. Mater. 15, 414–416 (2003).

Jana, N. R., Gearheart, L. & Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001).

Jana, N. R., Gearheart, L., Obare, S. O. & Murphy, C. J. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 18, 922–927 (2002).

Canizal, G., Ascencio, J. A., Torresday, G. & Yacaman, M. J. Multiple twinned gold nanorods grown by bio-reduction techniques. J. Nanopart. Res. 3, 475–481 (2001).

Mieszawska, A. J. & Zamborini, F. P. Gold nanorods grown directly on surfaces from microscale patterns of gold seeds. Chem. Mater. 17, 3415–3420 (2005).

Kim, F., Song, J. H. & Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 124, 14316–14317 (2002).

Loo, C. et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004).

Brinson, B. E. et al. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24, 14166–14171 (2008).

Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

Oldenburg, S. J., Jackson, J. B., Westcott, S. L. & Halas, N. J. Infrared extinction properties of gold nanoshells. Appl. Phys. Lett. 75, 2897–2899 (1999).

Oldenburg, S. J., Averitt, R. D., Westcott, S. L. & Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

Oldenburg, S. J., Westcott, S. L., Averitt, R. D. & Halas, N. J. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J. Chem. Phys. 111, 4729–4735 (1999).

Radloff, C., Vaia, R. A., Brunton, J., Bouwer, G. T. & Ward, V. K. Metal nanoshell assembly on a virus bioscaffold. Nano. Letter 5, 1187–1191 (2005).

Chen, J. et al. Facile synthesis of Au-silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 128, 14776–14777 (2006).

Chen, J. et al. Au nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Letters 5, 473–477 (2005).

Sha, M. Y., Xu, H. & Penn, S. G. SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomed 2, 725–734 (2007).

Hering, K. et al. SERS: a versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390, 113–124 (2008).

Cao, Y. C., Jin, R. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

Keren, S. et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105, 5844–5849 (2008).

Mocellin, S. & Nitti, D. TNF and cancer: the two sides of the coin. Front Biosci. 13, 2774–2783 (2008).

Visaria, R. K. et al. Enhancement of tumor thermal therapy using Au nanoparticle-assisted tumor necrosis factor alpha delivery. Mol. Cancer Ther. 5, 1014–1020 (2006).

Paciotti, G. F. et al. Colloidal Au: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery 11, 169–183 (2004).

Goel, R., Swanlund, D., Coad, J., Paciotti, G. F. & Bischof, J. C. TNF-alpha-based accentuation in cryoinjury-dose, delivery, and response. Mol. Cancer Therapy 6, 2039–2047 (2007).

Visaria, R., Bischof, J. C. & Loren, M. Nanotherapeutics for enhancing thermal therapy of cancer. Int. J. Hyperthermia 23, 501–511 (2007).

Huennekens, F. M. The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv. Enzyme. Regul. 34, 397–419 (1994).

Chen, Y. H. et al. Methotrexate conjugated to Au nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm. 4, 713–722 (2007).

Sershen, S. R., Westcott, S. L. & Halas, N. J. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

Chithrani, B. D., Ghazani, A. A. & Chan, W. C. Determining the size and shape dependence of Au nanoparticle uptake into mammalian cells. Nano Letter 6, 662–668 (2006).

Jain, P. K., Qian, W. & El-Sayed, M. A. Ultrafast cooling of photoexcited electrons in Au nanoparticle -thiolated DNA conjugates involves the dissociation of the Au-thiol bond. J. Am. Chem. Soc. 128, 2426–2433 (2006b).

Liu, Y., Shipton, M. K. & Ryan, J. Synthesis, stability, and cellular internalization of Au nanoparticles containing mixed peptide poly (ethylene glycol) monolayers. Anal. Chem. 79, 2221–2229 (2007a).

Saha, B. In vitro structural and functional evaluation of Au nanoparticles conjugated antibiotics. Nanoscale Res. Lett. 2, 614–622 (2007).

Gu, H., Ho, P. L., Tong, L., Wang, L. & Xu, B. Pre-senting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3, 1261–1263 (2003).

Rosemary, M. J., MacLaren, I. & Pradeep, T. Investigations of the antibacterial properties of ciprofloxacin @SiO2. Langmuir 22, 10125–10129 (2006).

Burygin, G. L. et al. On the enhanced antibacteria activity of antibiotics mixed with Au nanoparticles. Nanoscale Res. Lett. 4, 794–801 (2009).

Chen, Y.-H. et al. Methotrexate conjugated to Au nanoparticles inhibits tumor growth in a syngeneic lungtumor model. Mol. Pharm. 4, 713–722 (2007).

Choi, S.-W., Kim, W.-S. & Kim, J.-H. Surface modification of functional nanoparticles for controlled drug delivery. J. Dispers. Sci. Technol. 24, 475–487 (2003).

Paciotti, G. F., Kingston, D. G. I. & Tamarkin, L. Colloidal Au nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res. 67, 47–54 (2006).

Kommareddy, S. & Amiji, M. Poly(ethyleneglycol)-modified thiolated gelatine nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine 3, 32–42 (2007).

Shenoy, D. et al. Surface functionalization of Au nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int. J. Nanomedicine 1, 51–57 (2006).

Niidome, T. et al. PEG-modified Au nanorods with a stealth character for in vivo applications. J. Control. Release 114, 343–347 (2006).

Takahashi, H., Niidome, T., Kawano, T., Yamada, S. & Niidome, Y. Surface modification of Au nanorods using layer-by-layer technique for cellular uptake. J. Nanopart. Res. 10, 221–228 (2008).

Gu, Y. J. et al. Nuclear penetration of surface functionalized Au nanoparticles. Toxicol. Appl. Pharmacol. 237, 196–204 (2009).

Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymer nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

West, J. L. & Halas, N. J. Applications of nanotechnology to biotechnology. Curr. Opin. Biotechnol. 11, 215–217 (2000).

Radt, B., Smith, T. A. & Caruso, F. Optically addressable nanostructured capsules. Adv. Mat. 16, 2184–2189 (2004).

Loo, C. Nanoshellenabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004).

O’Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004).

Yamashita, S., Niidome, Y., Katayama, Y. & Niidome, T. Photochemical reaction of poly (ethylene glycol) on Au nanorods induced by near infrared pulsed -laser irradiation. Chem. Lett. 38, 226–227 (2009).

Shiotani, A., Mori, T., Niidome, T., Niidome, Y. & Katayama, Y. Stable incorporation of Au nanorods into N-isopropylacrylamidehydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23, 4012–4018 (2007).

Takahito, K., Yasuro, N., Takeshi, M., Yoshiki, K. & Takuro, N. PNIPAM gel-coated Aunanorods for targeted delivery responding to a near-infrared laser. Bioconj. Chem. 20, 209–212 (2009).

Patra, C. R., Bhattacharya, R., Mukhopadhyay, D. & Mukherjee, P. Fabrication of Au nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev. 62, 346–361 (2010).

Abbruzzese, J. L. et al. Phase II study of anti-epidermal growth factor receptor (egfr) antibody cetuximab (imc-c225) in combination with gemcitabine in patients with advanced pancreatic cancer. Proc. Am. Soc. Clin. Oncol. 20, 518 (2001).

Bruns, C. J. et al. Epidermal growth factor receptor blockade with c225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin. Cancer Res. 6, 1936–1948 (2000).

Sultana, A. et al. Gemcitabine based combination chemotherapy in advanced pancreatic cancer-indirect comparison. BMC Cancer 8, 192 (2008).

Patra, C. R. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 68, 1970–1978 (2008).

Mendelsohn, J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin. Cancer Res. 3, 2703–2707 (1997).

Mendelsohn, J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer 8, 3–9 (2001).

Friess, H. et al. Growth factor receptors are differentially expressed in cancers of the papilla of vater and pancreas. Ann. Surg. 230, 767–774 (1999).

Rocha-Lima, C. M., Soares, H. P., Raez, L. E. & Singal, R. Egfr targeting of solid tumors. Cancer Control 14, 295–304 (2007).

Sato, J. D. et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med. 1, 511–529 (1983).

Kleespies, A., Jauch, K. W. & Bruns, C. J. Tyrosine kinase inhibitors and gemcitabine: new treatment options in pancreatic cancer? Drug Resist. Updat. 9, 1–18 (2006).

Pecorelli, S., Pasinetti, B., Tisi, G. & Odicino, F. Optimizing gemcitabine regimens in ovarian cancer. Semin. Oncol. 33, S17–S25 (2006).

Jacobs, A. D. Gemcitabine-based therapy in pancreas cancer: gemcitabine-docetaxel and other novel combinations. Cancer 95, 923–927 (2002).

Mackey, J. R. Gemcitabine transport in Xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. J. Natl. Cancer Inst. 91, 1876–1881 (1999).

Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007).

Todd, R. C. & Lippard, S. J. Inhibition of transcription by platinum antitumor compounds. Metallomics 1, 280–291 (2009).

Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005).

Salerno, M. Impact of intracellular chloride concentration on cisplatin accumulation in sensitive and resistant GLC4 cells. J. Biol. Inorg. Chem. 14, 123–132 (2009).

Brown, S. D. Au Nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin, J. Am. Chem. Soc. 132, 4678–4684 (2010).

Kratz, F., Müller, I. A., Ryppa, C. & Warnecke, A. Prodrug strategies in anticancer chemotherapy. Chem. Med. Chem. 3, 20–53 (2008).

Farokhzad, O. C. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004).

Dharap, S. S. Tumor specific targeting of an anti cancer drug delivery system by LHRH peptide. Proc. Natl. Acad. Sci. USA 102, 12962–12967 (2005).

Cheng, W. W. & Allen, T. M. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab’ fragments and single chain Fv. J. Control. Release. 126, 50–58 (2008).

Kelemen, L. E. The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int. J. Cancer 119, 243–250 (2006).

McKenzie, F., Faulds, K. & Graham, D. LNA functionalized Au nanoparticles as probes for double stranded DNA through triplex formation. Chem. Commun. (Camb) 20, 2367–2369 (2008).

Eck, W. et al. PEGylated Au nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2, 2263–2272 (2008).

Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. & Wyatt, M. D. Au nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005).

Male, K. B., Lachance, B., Hrapovic, S., Sunahara, G. & Luong, J. H. Assessment of cytotoxicity of quantum dots and Au nanoparticles using cell-based impedance spectroscopy. Anal. Chem. 80, 5487–5493 (2008).

Pan, Y. et al. Au nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5, 2067–2076 (2009).

Gu, Y. J. et al. Nuclear penetration of surface functionalized Au nanoparticles. Toxicol. Appl. Pharmacol. 237, 196–204 (2009).

Yen, H. J., Hsu, S. H. & Tsai, C. L. Cytotoxicity and immunological response of Au and silver nanoparticles of different sizes. Small 5, 1553–1561 (2009).

Alkilany, A. M. et al. Cellular uptake and cytotoxicity of Au nanorods: molecular origin of cytotoxicity and surface effects. Small 5, 701–708 (2009).

Murphy, C. J. et al. Au nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008).

Brandenberger, C. et al. Effects and uptake of Au nanoparticles deposited at the air liquid interface of a human epithelial airway model. Toxicol. Appl. Pharmacol. 242, 56–65 (2010).

Bastus, N. G. et al. Homogeneous conjugation of peptides onto Au nanoparticles enhances macrophage response. ACS Nano 3, 1335–1344 (2009).

Kunzmann, A. et al. Toxicology of engineered nanomaterials: Focus on biocompatibility,biodistribution and biodegradation. Biochimica et Biophysica Acta 1810, 361–373 (2011).

Malugin, A. & Ghandehari, H. Cellular uptake and toxicity of Au nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J. Appl. Toxicol. 30, 212–217 (2010).

Chithrani, B. D., Stewart, J., Allen, C. & Jaffray, D. A. Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine 5, 118–127 (2009).

Chithrani, D. B., Dunne, M., Stewart, J., Allen, C. & Jaffray, D. A. Cellular uptake and transport of Au nanoparticles incorporated in a liposomal carrier. Nanomedicine 6, 161–169 (2010).

Nativo, P., Prior, I. A. & Brust, M. Uptake and intracellular fate of surface-modified Au nanoparticles. ACS Nano 2, 1639–1644 (2008).

Akiyama, Y., Mori, T., Katayama, Y. & Niidome, T. The effects of PEG grafting level and injection dose on Au nanorod biodistribution in the tumor-bearing mice. J. Control. Release. 139, 81–84 (2009).

Zhang, Q. et al. Au nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 20, 395102 (2009).

Cho, W. S. et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated Au nanoparticles. Toxicol. Appl. Pharmacol. 236, 16–24 (2009).

Semmler-Behnke, M. et al. Biodistribution of 1.4-and 18-nm Au particles in rats. Small 4, 2108–2111 (2008).

Dobrovolskaia, M. A. et al. Interaction of colloidal Au nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5, 106–117 (2009).

Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).