Review on functional bi-component nanocomposites based on hard/soft ferrites: Structural, magnetic, electrical and microwave absorption properties

Nano-Structures and Nano-Objects - Tập 26 - Trang 100728 - 2021
M.A. Almessiere1, Y. Slimani1, А.В. Труханов2,3, Sadaqat Ali4, A. Demir Korkmaz5, N.A. Algarou1,6, Hamide Aydın7, A. Baykal8, Muhammet S. Toprak9
1Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
2Scientific-Practical Materials Research Centre of National Academy of Sciences of Belarus, 220072 Minsk, Belarus
3South Ural State University, 454080, Chelyabinsk, Russia
4Mechanical and Energy Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
5Department of Chemistry, Istanbul Medeniyet University, 34700, Uskudar-Istanbul, Turkey
6Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
7Faculty of Engineering, Department of Chemistry, İstanbul University-Cerrahpaşa, 34320, Avcılar/İstanbul, Turkey
8Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
9Department of Applied Physics, KTH Royal Institute of Technology, SE 10691 Stockholm, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lu, 2007, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1222, 10.1002/anie.200602866

Majetich, 2007

Kozlovskiy, 2020, The study of the structural characteristics and catalytic activity of Co/CoCo2O4 nanowires, Composites Part B: Engineering, 191, 107968, 10.1016/j.compositesb.2020.107968

Gutfleisch, 2011, Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient, Adv. Mater., 23, 821, 10.1002/adma.201002180

Lu, 2004, Nanoengineering of a magnetically separable hydrogenation catalyst, Angew. Chem. Int. Ed., 43, 4303, 10.1002/anie.200454222

Kozlovskiy, 2020, FeCo-Fe2CoO4/Co3O4 nanocomposites: Phase transformations as a result of thermal annealing and practical application in catalysis, Ceramics International, 46, 10262, 10.1016/j.ceramint.2020.01.019

Ross, 2001, Patterned magnetic recording media, Annu. Rev. Mater. Res., 31, 203, 10.1146/annurev.matsci.31.1.203

Zdorovets, 2020, Study of phase transformations in Co/CoCo2O4 nanowires, Journal of Alloys and Compounds, 815, 152450, 10.1016/j.jallcom.2019.152450

Kozlovskiy, 2019, Study of the applicability of directional modification of nanostructures to improve the efficiency of their performance as the anode material of lithium-ion batteries, Materials Research Express, 6, 075066, 10.1088/2053-1591/ab1983

McBain, 2008, Magnetic nanoparticles for gen and drug delivery, Int. J. Nanomedicine, 3, 169

Pankhurst, 2003, Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys., 36, R167, 10.1088/0022-3727/36/13/201

Zdorovets, 2019, Investigation of phase transformations and corrosion resistance in Co/CoCo2O4 nanowires and their potential use as a basis for lithium-ion batteries, Scientific Reports, 9, 16646, 10.1038/s41598-019-53368-y

Hariharan, 2005, Superparamagnetism and magneto-caloric effect (MCE) in functional magnetic nanostructures, Adv. Mater. Sci., 10, 398

Liu, 2010, Magnetic properties and large cryogenic low-field magnetocaloric effect of HoCo 2 nanoparticles without core/shell structure, J. Nanopart. Res., 12, 1167, 10.1007/s11051-009-9717-8

Song, 2005

Mathew, 2007, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J., 129, 51, 10.1016/j.cej.2006.11.001

Bréchignac, 2008

Cole, 2011, Cancer theranostics: The rise of targeted magnetic nanoparticles, Trends Biotechnol., 29, 323, 10.1016/j.tibtech.2011.03.001

Vinnik, 2020, Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites, J. Magn. Magn. Mater., 498, 10.1016/j.jmmm.2019.166190

Singh, 2018, A current review on the synthesis and magnetic properties of M-type hexaferrites material, World J. Condens. Matter Phys., 8, 36, 10.4236/wjcmp.2018.82004

Mameli, 2019, Liquid phase synthesis of nanostructured spinel ferrites—A review, J. Nanosci. Nanotechnol., 19, 4857, 10.1166/jnn.2019.16808

Thakur, 2020, A review on MnZn ferrites: Synthesis, characterization and applications, Ceram. Int., 46, 15740, 10.1016/j.ceramint.2020.03.287

Dereje, 2016, Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3−xO4) for water splitting: A mini-review, Journal of Photonics for Energy, 7

Yousefi, 2019, An investigation of structural and magnetic properties of Ce–Nd doped strontium hexaferrite nanoparticles as a microwave absorbent, Mater. Chem. Phys., 235

Meng, 2019, Enhancements of saturation magnetization and coercivity in Ni0.5Zn0.5Fe2O4/SrFe 12O19 composite powders by exchange-coupling mechanism, Ceram. Int., 45, 2504, 10.1016/j.ceramint.2018.10.179

Han, 2018, Exchange-coupled Ni0.5Zn0.5Fe2O4/SrFe 12O19 composites with enhanced microwave absorption performance, J. Alloys Compd., 768, 742, 10.1016/j.jallcom.2018.07.310

Xu, 2014, Obtainment of exchange coupling coefficient of Ni0.6Zn0.4Fe2O4/SrFe 12O19 composites, Mater. Lett., 131, 203, 10.1016/j.matlet.2014.05.187

Radmanesh, 2013, Examination the grain size dependence of exchange coupling in oxide-based SrFe 12O19/Ni0.7Zn0.3Fe2O4 nanocomposites, J. Supercond. Nov. Magn., 26, 2411, 10.1007/s10948-012-1819-3

López-Ortega, 2015, Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles, Phys. Rep., 553, 1, 10.1016/j.physrep.2014.09.007

Crisan, 2020, Magnetic phase coexistence and hard–soft exchange coupling in FePt nanocomposite magnets, Nanomaterials, 10, 1618, 10.3390/nano10081618

Leite, 2012, Exchange coupling behavior in bimagnetic CoFe 2O4/CoFe 2 nanocomposite, J. Magn. Magn., 324, 2711, 10.1016/j.jmmm.2012.03.034

Rai, 2014, Synthesis and magnetic properties of hard-soft SrFe 10Al2O19/NiZnFe 2O4 ferrite nanocomposites, J. Nanosci. Nanotechnol., 14, 5272, 10.1166/jnn.2014.8836

Pathania, 2019, Development of tungsten doped Ni-Zn nano-ferrites with fast response and recovery time for hydrogen gas sensing application, Results Phys., 15, 10.1016/j.rinp.2019.102531

Xiong, 2016, Exchange-spring behavior in BaFe 12O19-Ni0.5Zn0.5Fe2O4 nanocomposites synthesized by a combustion method, Ceram. Int., 42, 11913, 10.1016/j.ceramint.2016.04.114

Soares, 2015, Magnetic couplings in CoFe 2O4/FeCo–FeO core–shell nanoparticles, J. Magn. Magn., 374, 192, 10.1016/j.jmmm.2014.08.015

Feng, 2014, Preparation and properties of SrFe 12O19/ZnFe 2O4 core/shell nano-powder microwave absorber, Integr. Ferroelectr., 152, 120, 10.1080/10584587.2014.901882

Li, 2016, Afacile way to realize exchange-coupling interaction in hard/soft magnetic composites, J. Magn. Magn. Mater., 41, 355, 10.1016/j.jmmm.2016.05.094

Meng, 2016, Facile synthesis of shell–core polyaniline/SrFe 12O19 composites and magnetic properties, RSC Adv., 6, 4946, 10.1039/C5RA22200A

Bader, 2006, Colloquium: Opportunities in nano magnetism, Rev. Modern Phys., 78, 10.1103/RevModPhys.78.1

Hazra, 2014, Preparation of nano ferrites and their applications, J. Nanosci. Nanotechnol., 14, 1983, 10.1166/jnn.2014.8745

Horvath, 2000, Microwave applications of soft ferrites, J. Magn. Magn. Mater., 215, 171, 10.1016/S0304-8853(00)00106-2

Harris, 2012, Modern microwave ferrites, IEEE Trans. Magn., 48, 31075, 10.1109/TMAG.2011.2180732

Mehdipour, 2013, Comparison of microwave absorption properties of SrFe 12O19, SrFe 12O19/NiFe 2O4 and NiFe 2O4 particles, J. Appl. Phys., 113

Hilczer, 2016, Dielectric and magnetic response of SrFe 12O19-CoFe 2O4 composites obtained by solid state reaction, Mater. Sci. Eng. B, 207, 47, 10.1016/j.mseb.2016.02.003

Mathews, 2020, Microwave absorption studies of (Ba0.5Sr0.5Fe12O19)1-x/(NiFe 2O4)x hard/soft ferrite nanocomposites, Mater. Chem. Phys., 252, 10.1016/j.matchemphys.2020.123063

Han, 2018, Exchange-coupled Ni0.5Zn0.5Fe2O4/SrFe 12O19 composites with enhanced microwave absorption performance, J. Alloys Compd., 768, 742, 10.1016/j.jallcom.2018.07.310

Ma, 2014, Complex exchange anisotropy behavior in Co3O4–Ni0.6Zn0.4Fe2O4 composite with different Co3O4 content, Mater. Res. Bull., 51, 381, 10.1016/j.materresbull.2013.12.047

Slimani, 2020, Impacts of sol-gel auto-combustion and ultrasonication approaches on structural, magnetic, and optical properties of Sm-Tm Co-substituted Sr0.5Ba0.5Fe12O19 nanohexaferrites: Comparative study, Nanomaterials, 10, 272, 10.3390/nano10020272

Saini, 2016, Effective permeability and miniaturization estimation of ferrite-loaded microstrip patch antenna, J. Electron. Mater., 45, 4162, 10.1007/s11664-016-4634-y

Saini, 2016, Low loss composite nano ferrite with matching permittivity and permeability in UHF band, Mater. Res. Bull., 76, 94, 10.1016/j.materresbull.2015.12.002

Cullity, 2008

Manikandan, 2014, A novel synthesis structural morphological and opto-magnetic characterizations of magnetically separable spinel CoxMn1−xFe2O4(0≤x≤1) nano-catalysts, J. Supercond. Nov. Magn., 27, 2841, 10.1007/s10948-014-2771-1

Sickafus, 1999, Structure of spinel, J. Am. Ceram. Soc., 82, 3279, 10.1111/j.1151-2916.1999.tb02241.x

Naseri, 2012, Crystalization in spinel ferrite nanoparticles, 349

Rafiq, 2020, Understanding the structural electronic magnetic and optical properties of spinel MFe2O4 (M = Mn, Co, Ni) ferrites, Ceram. Int., 46, 4976, 10.1016/j.ceramint.2019.10.237

Gutiérrez-López, 2011, Microstructure, magnetic and mechanical properties of Ni–Zn ferrites prepared by powder injection moulding, Powder Technol., 210, 29, 10.1016/j.powtec.2011.02.008

Jiang, 2011, Ni0.5Zn0.5Fe2O4 nanoparticles and their magnetic properties and adsorption of bovine serum albumin, Powder Technol., 211, 90, 10.1016/j.powtec.2011.03.039

Wenwei, 2012, Co0.35Mn0.65Fe2O4 magnetic particles: Preparation and kinetics research of thermal process of the precursor, Powder Technol., 215216, 200, 10.1016/j.powtec.2011.09.048

Pullar, 2015, Hexagonal ferrite fibres and nanofibres, Solid State Phenom., 241, 1, 10.4028/www.scientific.net/SSP.241.1

Went, 1952, Ferroxdure, a class of permanent magnetic materials, Philips Tech. Rev., 13, 194

Jonker, 1956, Ferroxplana, hexagonal ferromagnetic iron-oxide compounds for very high frequencies, Philips Tech. Rev., 18

Smit, 1954, 69

Makovec, 2019, Incorporation of Sc into the structure of barium-hexaferrite nanoplatelets and its extraordinary finite-size effect on the magnetic properties, Acta Mater., 172, 84, 10.1016/j.actamat.2019.04.050

Pullar, 2012, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci., 57, 1191, 10.1016/j.pmatsci.2012.04.001

Trukhanov, 2017, Investigation into the structural features and microwave absorption of doped barium hexaferrites, Dalton Trans., 46, 10.1039/C7DT01708A

Trukhanov, 2017, Effect of gallium doping on electromagnetic properties of barium hexaferrite, J. Phys. Chem. Solids, 111, 142, 10.1016/j.jpcs.2017.07.014

Veisi, 2019, Magnetic and microwave absorption properties of Cu/Zr doped M-type Ba/Sr hexaferrites prepared via sol–gel auto-combustion method, J. Alloys Compd., 773, 1187, 10.1016/j.jallcom.2018.09.189

Li, 2011, Chemical bond and hardness of M-, W-type hexagonal barium ferrites, Can. J. Chem., 89, 573, 10.1139/v11-013

ICDD Card Numbers. 84-1531 (SrFe 12O19), 84-757 (BaFe 12O19), and 84-2046 (PbFe 12O19). International Centre for Diffraction Data (ICDD), Newton Square, PA, USA.

Jones, 1990, Domain structure of the single crystal hexagonal ferrite, Co/sub2/X, IEEE Trans. Magn., 26, 2804, 10.1109/20.104880

Tauber, 1970, Magnetic properties of Ba2Zn2Fe28O46 and Ba2Co2Fe28O46 single crystals, J. Appl. Phys., 41, 1353, 10.1063/1.1658939

Kerecman, 1968, Magnetic properties of Ba4Zn2Fe36O60 single crystals, J. Appl. Phys., 39, 726, 10.1063/1.2163602

Asiri, 2018, Magneto-optical properties of BaCr yFe12−yO19 (0.0≤y≤1.0) hexaferrites, J. Magn. Magn. Mater., 451, 463, 10.1016/j.jmmm.2017.11.100

Özgür, 2009, Microwave ferrites, part 1: Fundamental properties, J. Mater. Sci., Mater. Electron., 20, 789, 10.1007/s10854-009-9923-2

López-Ortega, 2015, Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles, Phys. Rep., 553, 1, 10.1016/j.physrep.2014.09.007

Torkian, 2016, Magnetic properties of hard-soft SrFe 10Al2O19/Co0.8Ni0.2Fe2O4 ferrite synthesized by one-pot sol–gel autocombustion, J. Magn. Magn. Mater., 416, 408, 10.1016/j.jmmm.2016.05.050

Han, 2018, Exchange-coupled Ni0.5Zn0.5Fe2O4/SrFe 12O19 composites with enhanced microwave absorption performance, J. Alloys Compd., 768, 742, 10.1016/j.jallcom.2018.07.310

Jenuš, 2016, Ferrite-based exchange-coupled hard–soft magnets fabricated by spark plasma sintering, J. Am. Ceram. Soc., 99, 1927, 10.1111/jace.14193

Jubert, 2014, Micromagnetic simulations of exchange-coupled core-shell particulate media, IEEE Trans. Magn., 50, 1

Soares, 2013, Critical dimension for magnetic exchange-spring coupled core/shell CoFe 2O4/CoFe 2 nanoparticles, J. Magn. Magn. Mater., 326, 81, 10.1016/j.jmmm.2012.08.040

Zan, 2013, One-step hydrothermal synthesis and characterization of high magnetization CoFe 2O4/Co0.7Fe0.3 nanocomposite permanent magnets, J. Alloys Compd., 553, 79, 10.1016/j.jallcom.2012.11.120

Liu, 2014, Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell, Angew. Chem. Int. Ed., 53, 2176, 10.1002/anie.201309723

Dupuis, 2014, Synthesis and properties of magnetic nanoparticles with tunable magnetic anisotropy energy, MRS Online Proc. Libr., 1708, 1, 10.1557/opl.2014.485

Juhin, 2014, Direct evidence for an interdiffused intermediate layer in bi-magnetic core–shell nanoparticles, Nanoscale, 6, 11911, 10.1039/C4NR02886D

Li, 2007, Influence of Co/Fe ratios on the structures and the magnetic properties of FexCo1−x/CoyFe1−yFe2O4, J. Magn. Magn. Mater., 309, 36, 10.1016/j.jmmm.2006.06.009

Li, 2015, Characterization and magnetism of Co-modified γ-Fe2O3 core–shell nanoparticles by enhancement using NaOH, J. Magn. Magn. Mater., 374, 157, 10.1016/j.jmmm.2014.08.033

Song, 2012, Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe 2O4 and MnFe 2O4 nanocrystals with core–shell architecture, J. Am. Chem. Soc., 134, 10182, 10.1021/ja302856z

Lee, 2011, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nature Nanotechnology, 6, 418, 10.1038/nnano.2011.95

Pahwa, 2020, Composition dependent magnetic and microwave properties of exchange-coupled hard/soft nanocomposite ferrite, J. Alloys Compd., 815, 10.1016/j.jallcom.2019.152391

Liu, 2002, Exchange-coupling interaction in nanocomposite SrFe 12O19∕γ-Fe2O3 permanent ferrites, J. Appl. Phys., 92, 1028, 10.1063/1.1487908

Tyagi, 2011, Development of hard/soft ferrite nanocomposite for enhanced microwave absorption, Ceram. Int., 37, 2631, 10.1016/j.ceramint.2011.04.012

Roy, 2009, Observation of the exchange spring behavior in hard–soft-ferrite nanocomposite, J. Magn. Magn. Mater., 321, L11, 10.1016/j.jmmm.2008.09.017

Yang, 2015, Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe 12O19∕Y3Fe5O12) ferrites based on polyaniline, Synth. Met., 210, 245, 10.1016/j.synthmet.2015.10.006

Torkian, 2016, Magnetic properties of hard-soft SrFe 10Al2O19/Co0.8Ni0.2Fe2O4 ferrite synthesized by one-pot sol–gel auto-combustion, J. Magn. Magn. Mater., 416, 408, 10.1016/j.jmmm.2016.05.050

Almessiere, 2018, Structural, morphological and magnetic properties of hard/soft SrFe 12−xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: Effect of vanadium substitution, J. Alloys Compd., 767, 966, 10.1016/j.jallcom.2018.07.212

Meiklejohn, 1956, New magnetic anisotropy, Phys. Rev., 102, 1413, 10.1103/PhysRev.102.1413

Rana, 2014, Positive exchange-bias and giant vertical hysteretic shift in La0.3Sr0.7FeO 3/SrRuO 3 bilayers, Sci. Rep., 4, 4138, 10.1038/srep04138

Nogués, 1996, Positive exchange bias in FeF 2-Fe bilayers, Phys. Rev. Lett., 76, 4624, 10.1103/PhysRevLett.76.4624

Mishra, 2009, Training-induced positive exchange bias in NiFe/IrMn bilayers, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.177208

Almessiere, 2018, Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe 2O4)x nanocomposites fabricated by a one-pot citrate sol–gel combustion method, J. Alloys Compd., 762, 389, 10.1016/j.jallcom.2018.05.232

Algarou, 2020, Exchange-coupling behavior in SrTb 0.01Tm0.01Fe11.98O19/(CoFe 2O4)x hard/soft nanocomposites, New J. Chem., 44, 5800, 10.1039/D0NJ00109K

Algarou, 2020, Enhancement on the exchange coupling behavior of SrCo0.02Zr0.02Fe11.96O19/MFe2O4 (M = Co, Ni, Cu, Mn and Zn) as hard/soft magnetic nanocomposites, J. Magn. Magn. Mater., 499, 10.1016/j.jmmm.2019.166308

Saeedi Afshar, 2018, Structural, magnetic and microwave absorption properties of SrFe 12O19/Ni0.6Zn0.4Fe2O4 composites prepared by one-pot solution combustion method, J. Magn. Magn. Mater., 466, 1, 10.1016/j.jmmm.2018.06.061

Arcos, 1998, Chemical homogeneity of nanocrystalline Zn–Mn spinel ferrites obtained by high-energy ball milling, J. Solid State Chem., 141, 10, 10.1006/jssc.1998.7882

Xia, 2018, Structural and magnetic properties of soft/hard NiFe [email protected] core/shell composite prepared by the ball-milling-assisted ceramic process, J. Mater. Sci., Mater. Electron., 29, 13903, 10.1007/s10854-018-9523-0

Xia, 2018, Structural and magnetic properties of soft/hard [email protected] core/shell composite synthesized by the ball-milling-assisted ceramic process, J. Electron. Mater., 47, 6811, 10.1007/s11664-018-6584-z

Chen, 2019, Exchange-coupling behavior in soft/hard Li0.3Co0.5Zn0.2Fe2O4/SrFe 12O19 core/shell composite synthesized by the two-step ball-milling-assisted ceramic process, J. Mater. Sci., Mater. Electron., 30, 1579, 10.1007/s10854-018-0429-7

Zhang, 2010, Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity, ACS Appl. Mater. Interfaces, 2, 2915, 10.1021/am100618h

Choi, 2010, Photocatalytic comparison of TiO 2 nanoparticles and electrospun TiO 2 nanofibers: Effects of mesoporosity and interparticle charge transfer, J. Phys. Chem. C, 114, 16475, 10.1021/jp104317x

Chuangchote, 2009, Photocatalytic activity for hydrogen evolution of electrospun TiO 2 nanofibers, ACS Appl. Mater. Interfaces, 1, 1140, 10.1021/am9001474

Pham, 2006, Electrospinning of polymeric nanofibers for tissue engineering applications: A review, Tissue Eng., 12, 1197, 10.1089/ten.2006.12.1197

Song, 2012, Microstructure, magnetic properties and exchange–coupling interactions for one-dimensional hard/soft ferrite nanofibers, J. Solid State Chem., 185, 31, 10.1016/j.jssc.2011.10.009

Shen, 2012, Shape anisotropy, exchange-coupling interaction and microwave absorption of hard/soft nanocomposite ferrite microfibers, J. Am. Ceram. Soc., 95, 3863, 10.1111/j.1551-2916.2012.05375.x

Dong, 2014, Improved magnetic properties of SrFe 12O19/FeCo core–shell nanofibers by hard/soft magnetic exchange–coupling effect, Mater. Lett., 120, 9, 10.1016/j.matlet.2014.01.022

Pan, 2015, A novel method to fabricate CoFe 2O4/SrFe 12O19 composite ferrite nanofibers with enhanced exchange coupling effect, Nanoscale Res. Lett., 10, 131, 10.1186/s11671-015-0829-z

Xiang, 2013, Fabrication, characterization, exchange coupling and magnetic behavior of CoFe 2O4/CoFe 2 nanocomposite nanofibers, Chem. Phys. Lett., 576, 39, 10.1016/j.cplett.2013.05.020

Suzuki, 1996, Structure and magnetic properties of epitaxial spinel ferrite thin films, Appl. Phys. Lett., 68, 714, 10.1063/1.116601

Tsuchiya, 1992, Preparation of spinel-type ferrite thin films by the dip-coating process and their magnetic properties, J. Mater. Sci., 27, 3645, 10.1007/BF01151845

Emori, 2017, Coexistence of low damping and strong magnetoelastic coupling in epitaxial spinel ferrite thin films, Adv. Mater., 29, 10.1002/adma.201701130

Algarou, 2020, Magnetic and microwave properties of SrFe 12O19/MCe0.04Fe1.96O4 (M = Cu, Ni, Mn, Co and Zn) hard/soft nanocomposites, J. Mater. Res. Technol., 9, 5858, 10.1016/j.jmrt.2020.03.113

Raghuram, 2020, BaSrLaFe12O19 nanorods: Optical and magnetic properties, J. Mater. Sci., Mater. Electron., 31, 8022, 10.1007/s10854-020-03342-6

Manohar, 2019, Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method, Appl. Phys. A, 125, 477, 10.1007/s00339-019-2760-0

Mallikarjuna, 2020, Structural transformation and high negative dielectric constant behavior in (1−x) (Al0⋅ 2La0⋅ 8TiO3) + (x) (BiFeO3) (x = 0.2–0.8) nanocomposites, Physica E, 122, 10.1016/j.physe.2020.114204

Raghuram, 2019, Investigations on functional properties of hydrothermally synthesized Ba1-xSrxFe12O19 (x=0.0-0.8) nanoparticles, Mater. Sci. Semicond. Process., 94, 136, 10.1016/j.mssp.2019.01.037

Naresh, 2019, Optical, magnetic and ferroelectric properties of Ba0.2Cu0.8-xLaxFe2O4 (x=0.2–0.6) nanoparticles, Ceram. Int., 45, 7515, 10.1016/j.ceramint.2019.01.044

Zhang, 2009, Synthesis and characterization of SrFe 12O19/CoFe 2O4 nanocomposites with core–shell structure, J. Alloys Compd., 469, 422, 10.1016/j.jallcom.2008.01.152

Andoshe, 2015, Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting, Electron. Mater. Lett., 11, 323, 10.1007/s13391-015-4402-9

Xu, 2015, Magnetic self-assembly for the synthesis of magnetically exchange coupled MnBi/Fe–Co composites, J. Solid State Chem., 231, 108, 10.1016/j.jssc.2015.08.019

Algarou, 2020, Developing the magnetic dielectric and anticandidal characteristics of SrFe 12O19/(Mg0.5Cd0.5Dy0.03Fe1.97O4)x hard/soft ferrite nanocomposites, J. Taiwan Inst. Chem. Eng., 113, 344, 10.1016/j.jtice.2020.07.022

Mansour, 2018, Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites, J. Mol. Struct., 1152, 207, 10.1016/j.molstruc.2017.09.089

Lavorato, 2016, Thickness dependence of exchange coupling in epitaxial Fe3O4/CoFe 2O4 soft/hard magnetic bilayers, Phys. Rev. B, 94, 10.1103/PhysRevB.94.054405

Chai, 2012, Exchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film, Sci. Rep., 2, 832, 10.1038/srep00832

Cui, 2012, Exchange coupling in hard/soft-magnetic multilayer films with non-magnetic spacer layers, J. Appl. Phys., 111, 07B503, 10.1063/1.3671774

Satalkar, 2014, Study of hard-soft magnetic ferrite films prepared by pulsed laser deposition, J. Phys. Conf. Ser., 534, 10.1088/1742-6596/534/1/012043

Breitwieser, 2017, Ferrite nanostructures consolidated by spark plasma sintering (SPS)

Yi, 2014, Magnetic properties of hard (CoFe 2O4)–soft (Fe3O4) composite ceramics, Ceram. Int., 40, 7837, 10.1016/j.ceramint.2013.12.128

Fei, 2011, Synthesis and magnetic properties of hard magnetic (CoFe 2O4)–soft magnetic (Fe3O4) nano-composite ceramics by SPS technology, J. Magn. Magn. Mater., 323, 1811, 10.1016/j.jmmm.2011.02.014

Hajalilou, 2016, A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties, Appl. Phys. A., 122, 680, 10.1007/s00339-016-0217-2

Hazra, 2015, A novel ‘one-pot’ synthetic method for preparation of (Ni0.65Zn0.35Fe2O4)x – (BaFe 12O19)1−x nanocomposites and study of their microwave absorption and magnetic properties, Powder Technol., 279, 10, 10.1016/j.powtec.2015.03.046

Harikrishnan, 2016, A study on the extent of exchange coupling between (Ba0.5Sr0.5Fe12O19)1−x(CoFe 2O4)x magnetic nanocomposites synthesized by solgel combustion method, J. Magn. Magn. Mater., 418, 217, 10.1016/j.jmmm.2016.03.037

Algarou, 2020, Exchange-coupling effect in hard/soft SrTb 0.01Tm0.01Fe11.98O19/AFe2O4 (where A = Co, Ni, Zn, Cu and Mn) composites, Ceram. Int., 46, 7089, 10.1016/j.ceramint.2019.11.201

Pahwa, 2017, Structural, magnetic and microwave properties of exchange coupled and non-exchange coupled BaFe 12O19/NiFe 2O4 nanocomposites, J. Alloys Compd., 725, 1175, 10.1016/j.jallcom.2017.07.220

Song, 2011, One-dimensional SrFe 12O19/Ni0.5Zn0.5Fe2O4 composite ferrite nanofibers and enhancement magnetic property, J. Nanosci. Nanotechnol., 11, 6979, 10.1166/jnn.2011.4213

Xiong, 2016, Exchange-spring behavior in BaFe12O19-Ni0.5Zn0.5Fe2O4 nanocomposites synthesized by a combustion method, Ceram. Int., 42, 11913, 10.1016/j.ceramint.2016.04.114

Pahwa, 2019, Interfacial exchange coupling driven magnetic and microwave properties of BaFe 12O19/Ni0.5Zn0.5Fe2O4 nanocomposites, J. Magn. Magn. Mater., 484, 61, 10.1016/j.jmmm.2019.03.127

Pubby, 2020, Structural, magnetic, dielectric, microwave absorption, and optical characterization of Ni0.1Co0.9(MnZr)xFe2−2xO4/BaySr1−yFe12O19 nanocomposites, J. Mater. Sci., Mater. Electron., 31, 599, 10.1007/s10854-019-02564-7

Schrefl, 1994, Remanence and coercivity in isotropic nanocrystalline permanent magnets, Phys. Rev. B, 49, 6100, 10.1103/PhysRevB.49.6100

Sharma, 2018, Exchange-coupled hard-soft ferrites; A new microwave material, J. Alloys Compd., 736, 266, 10.1016/j.jallcom.2017.11.113

Liu, 2019, Improved magnetic and electromagnetic absorption properties of xSrFe 12O19/(1-x)NiFe 2O4 composites, J. Am. Ceram. Soc., 102, 6680, 10.1111/jace.16506

Hilczer, 2016, Dielectric and magnetic response of SrFe 12O19–CoFe 2O4 composites obtained by solid state reaction, Mater. Sci. Eng. B., 207, 47, 10.1016/j.mseb.2016.02.003

Fang, 1998, Preparation and magnetic properties of (Zn–sn) substituted barium hexaferrite nanoparticles for magnetic recording, J. Magn. Magn. Mater., 187, 129, 10.1016/S0304-8853(98)00139-5

Sharma, 2014, Effect of Mg–Zr substitution and microwave processing on magnetic properties of barium hexaferrite, Physica B, 448, 24, 10.1016/j.physb.2014.04.035

Almessiere, 2018, Structural and magnetic properties of Ce-doped strontium hexaferrite, Ceram. Int., 44, 9000, 10.1016/j.ceramint.2018.02.101

Demir, 2014, Magnetic and optical properties of Mn1−xZnxFe2O4nanoparticles, J. Inorg. Organomet. Polym. Mater., 24, 729, 10.1007/s10904-014-0032-1

Slimani, 2020, Influence of Tm–Tb substitution on magnetic and optical properties of Ba–Sr hexaferrites prepared by ultrasonic assisted citrate sol–gel approach, Mater. Chem. Phys., 253, 10.1016/j.matchemphys.2020.123324

Almessiere, 2019, Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites, Ultrason. Sonochemistry, 58, 10.1016/j.ultsonch.2019.104654

Boda, 2019, Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles, J. Magn. Magn. Mater., 473, 228, 10.1016/j.jmmm.2018.10.023

Mazen, 2019, A comparative study of the structural and magnetic properties for Zn2+ and Ge4+ ions substituted nickel ferrites, J. Magn. Magn. Mater., 491, 10.1016/j.jmmm.2019.165562

Al Yaqoob, 2019, Selectivity and efficient Pb and Cd ions removal by magnetic MFe2O4 (M=Co, Ni, Cu and Zn) nanoparticles, Mater. Chem. Phys., 232, 254, 10.1016/j.matchemphys.2019.04.077

Liu, 2019, Investigations of Ce-Zn co-substitution on crystal structure and ferrimagnetic properties of M-type strontium hexaferrites Sr1−xCexFe12−xZnxO19 compounds, J. Alloys Compd., 785, 452, 10.1016/j.jallcom.2019.01.182

Xia, 2015, Magnetic properties of sintered SrFe 12O19–CoFe 2O4 nanocomposites with exchange coupling, J. Alloys Compd., 653, 108, 10.1016/j.jallcom.2015.08.252

El Moussaoui, 2016, Synthesis and magnetic properties of tin spinel ferrites doped manganese, J. Magn. Magn. Mater., 405, 181, 10.1016/j.jmmm.2015.12.059

Nandan, 2019, Cation distribution in nanocrystalline cobalt substituted nickel ferrites: X-ray diffraction and Raman spectroscopic investigations, J. Phys. Chem. Solids, 129, 298, 10.1016/j.jpcs.2019.01.017

Manikandan, 2019, Enhancement in magnetic and dielectric properties of the ruthenium-doped copper ferrite (Ru-CuFe 2O4) nanoparticles, J. Magn. Magn. Mater., 476, 18, 10.1016/j.jmmm.2018.12.050

Zhang, 2020, Magnetic transformation of Zn-substituted Mg-Co ferrite nanoparticles: Hard magnetism → soft magnetism, J. Magn. Magn. Mater., 506, 10.1016/j.jmmm.2020.166623

Slimani, 2018, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution, Ceram. Int., 44, 14242, 10.1016/j.ceramint.2018.05.028

Xia, 2019, Enhancements of saturation magnetization and coercivity in Ni0.5Zn0.5Fe2O4/SrFe 12O19 composite powders by exchange-coupling mechanism, J. Mater. Sci., Mater. Electron., 30, 11682, 10.1007/s10854-019-01527-2

Almessiere, 2020, Ultrasonic synthesis magnetic and optical characterization of Tm3+ and Tb3+ ions co-doped barium nanohexaferrites, J. Solid State Chem., 286, 10.1016/j.jssc.2020.121310

Yasmin, 2018, Influence of samarium substitution on the structural and magnetic properties of M-type hexagonal ferrites, J. Magn. Magn. Mater., 446, 276, 10.1016/j.jmmm.2017.09.005

Almessiere, 2020, Tb3+ substituted strontium hexaferrites: Structural, magnetic and optical investigation and cation distribution, J. Rare Earths, 38, 402, 10.1016/j.jre.2019.06.007

Almessiere, 2019, Tailored microstructures optical and magnetic qualities of strontium hexaferrites: Consequence of Tm3+ and Tb3+ Co-substitution, Ceram. Int., 45, 21385, 10.1016/j.ceramint.2019.07.126

Almessiere, 2019, Effect of dysprosium substitution on magnetic and structural properties of NiFe 2o4 nanoparticles, J. Rare Earths, 37, 871, 10.1016/j.jre.2018.10.009

Xia, 2016, The availability of Henkel plots for sintered hard/soft magnetic composite ferrites, Physica B, 493, 14, 10.1016/j.physb.2016.04.013

Kahnes, 2019, Phase formation and magnetic properties of CoFe 2O4/CoFe 2 nanocomposites, Mater. Chem. Phys., 227, 83, 10.1016/j.matchemphys.2019.01.064

Yang, 2019, An investigation on microstructural, spectral and magnetic properties of Pr–Cu double-substituted M-type Ba–Sr hexaferrites, Chinese J. Phys., 57, 250, 10.1016/j.cjph.2018.11.012

Jacobo, 2015, Sr hexaferrite/Ni ferrite nanocomposites: Magnetic behavior and microwave absorbing properties in the X-band, Mater. Chem. Phys., 157, 124, 10.1016/j.matchemphys.2015.03.026

Fang, 2021, High-efficiency microwave absorbing performance originating from sufficient magnetic exchange coupling interaction and impressive dielectric loss, J. Mater. Chem. C, 9, 1936, 10.1039/D0TC05222A

Fischbacher, 2018, Micromagnetics of rare-earth efficient permanent magnets, J. Phys. D: Appl. Phys., 51, 10.1088/1361-6463/aab7d1

Yang, 2016, Enhancements of (BH)max and remanence in BaFe 12O19/CaFe 2O4/CoFe 2O4 nanocomposite powders by exchange-coupling mechanism, Mater. Chem. Phys., 171, 27, 10.1016/j.matchemphys.2016.01.010

Fang, 2021, Broad microwave absorption bandwidth achieved by exchange coupling interaction between hard and soft magnetic materials, Ceram. Int., 47, 2879, 10.1016/j.ceramint.2020.09.011

Ashour, 2018, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique, Particuology, 40, 141, 10.1016/j.partic.2017.12.001

Ashiq, 2017, Magnetic and electrical properties of M-type nano-strontium hexaferrite prepared by sol–gel combustion method, J. Magn. Magn. Mater., 444, 426, 10.1016/j.jmmm.2017.08.065

Hou, 2013, Terahertz power splitter based on ferrite photonic crystal, Optik, 124, 5285, 10.1016/j.ijleo.2012.06.095

Wang, 2019, T-typed photonic crystal circulator with square lattice Al2O3 rods array and NiZn-ferrite posts, Mater. Des., 181, 10.1016/j.matdes.2019.107978

Bierlich, 2019, Sintering, microwave properties, and circulator applications of textured Sc-substituted M-type ferrite thick films, J. Eur. Ceram. Soc., 39, 3077, 10.1016/j.jeurceramsoc.2019.04.014

Bhongale, 2020, Mg-Nd-Cd ferrite as substrate for X-band microstrip patch antenna, J. Magn. Magn. Mater., 499, 10.1016/j.jmmm.2019.165918

Vinaykumar, 2019, Low-temperature sintering of SrCo 1.5Ti1.5Fe9O19 ferrite and its characterization for X-band antenna application, J. Alloys Compd., 790, 413, 10.1016/j.jallcom.2019.03.168

Yang, 2019, TiO2 tailored low loss NiCuZn ferrite ceramics having equivalent permeability and permittivity for miniaturized antenna, J. Magn. Magn. Mater., 487, 10.1016/j.jmmm.2019.165318

Xie, 2019, Co-substituted LiZnTiBi ferrite with equivalent permeability and permittivity for high-frequency miniaturized antenna application, Ceram. Int., 45, 17915, 10.1016/j.ceramint.2019.06.008

Manjura Hoque, 2013, Exchange-spring mechanism of soft and hard ferrite nanocomposites, Mater. Res. Bull., 48, 2871, 10.1016/j.materresbull.2013.04.009

Green, 2019, Recent progress of nanomaterials for microwave absorption, J. Mater., 5, 503

Trukhanov, 2018, Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites, J. Magn. Magn. Mater., 462, 127, 10.1016/j.jmmm.2018.05.006

Trukhanov, 2018, Control of electromagnetic properties in substituted M-type hexagonal ferrites, J. Alloys Compd., 754, 247, 10.1016/j.jallcom.2018.04.150

Trukhanov, 2020, Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni–Co spinels, J. Alloys Compd., 841, 10.1016/j.jallcom.2020.155667

Koops, 1951, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Phys. Rev., 83, 121, 10.1103/PhysRev.83.121

Van Uitert, 1956, Dielectric properties of and conductivity in ferrites, Proc. IRE, 44, 1294, 10.1109/JRPROC.1956.274952

Van Uitert, 1956, High-resistivity nickel ferrites − the effect of minor additions of manganese or cobalt, J. Chem. Phys., 24, 306, 10.1063/1.1742468

Parker, 1966, The effect of cobalt substitution on electrical conduction in nickel ferrite, Br, J. Appl. Phys., 17, 1269

Maeda, 2004, Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds, J. Magn. Magn. Mater., 281, 195, 10.1016/j.jmmm.2004.04.105

Nandwana, 2018, Exchange coupling in soft magnetic nanostructures and its direct effect on their theranostic properties, ACS Appl. Mater. Interfaces, 10, 27233, 10.1021/acsami.8b09346

Feng, 2016, Exchange coupling and microwave absorption in core/shell-structured hard/soft ferrite-based CoFe 2O4/NiFe 2O4 nanocapsules, AIP Adv., 7

Hazra, 2014, Preparation of nanoferrites and their applications, J. Nanosci. Nanotechnol., 14, 1983, 10.1166/jnn.2014.8745

Tyagi, 2012, Microwave absorption study of carbon nano tubes dispersed hard/soft ferrite nanocomposite, Ceram. Int., 34, 4561, 10.1016/j.ceramint.2012.02.034

Shen, 2012, Shape anisotropy exchange-coupling interaction and microwave absorption of hard/soft nanocomposite ferrite, J. Am. Ceram. Soc., 95, 3863, 10.1111/j.1551-2916.2012.05375.x

Wang, 2012, Preparation, and magnetic properties of BaFe 12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite, J. Magn. Magn. Mater., 324, 3024e3028, 10.1016/j.jmmm.2012.04.059

Moon, 2007, Synthesis and magnetic properties of nano Ba-hexaferrite/NiZn ferrite composites, Phys. Status Solidi (a), 204, 4141, 10.1002/pssa.200777228

Kahnes, 2019, Synthesis and magnetic properties of hard/soft SrAl 2Fe10O19/Fe(FeCo 2) nanocomposites, J. Magn. Magn. Mater., 480, 40, 10.1016/j.jmmm.2019.02.065

Hernando, 2000, Soft and hard nanostructured magnetic materials, Hyperfine Interact., 130, 221, 10.1023/A:1011096522429

Arcas, 1998, Soft to hard magnetic anisotropy in nanostructured magnets, Phys. Rev. B, 58, 5193, 10.1103/PhysRevB.58.5193

Liu, 2002, Exchange-coupling interaction in nanocomposite SrFe 12O19/gamma-Fe2O3 permanent ferrites, J. Appl. Phys., 92, 1028, 10.1063/1.1487908

Pahwa, 2017, Structural, magnetic and microwave properties of exchange coupled and non-exchange coupled BaFe 12O19/NiFe 2O4 nanocomposites, J. Alloys Compd., 725, 1175, 10.1016/j.jallcom.2017.07.220

Hazra, 2014, Development of a novel one-pot synthetic method for the preparation of (Mn0.2Ni0.4Zn0.4Fe2O4)x–(BaFe 12O19)1−x nanocomposites and the study of their microwave absorption and magnetic properties, RSC Adv., 4, 45715, 10.1039/C4RA07145J