Review on carbonation curing of cement-based materials

Journal of CO2 Utilization - Tập 21 - Trang 119-131 - 2017
Duo Zhang1, Zaid Ghouleh2, Yixin Shao2
1Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
2Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bertos, 2004, A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2, J. Hazard. Mater., 112, 193, 10.1016/j.jhazmat.2004.04.019

Ashraf, 2016, Carbonation of cement-based materials: challenges and opportunities, Constr. Build. Mater., 120, 558, 10.1016/j.conbuildmat.2016.05.080

Jang, 2016, Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials, Constr. Build. Mater., 127, 762, 10.1016/j.conbuildmat.2016.10.017

Berger, 1972, Acceleration of hydration of calcium silicates by carbon dioxide treatment, Nature, 240, 16

Young, 1974, Accelerated curing of compacted calcium silicate mortars on exposure to CO2, J. Am. Ceram. Soc., 57, 394, 10.1111/j.1151-2916.1974.tb11420.x

Goodbrake, 1979, Reaction of hydraulic calcium silicates with carbon dioxide and water, J. Am. Ceram. Soc., 62, 488, 10.1111/j.1151-2916.1979.tb19112.x

Šauman, 1971, Carbonization of porous concrete and its main binding components, Cem. Concr. Res., 1, 645, 10.1016/0008-8846(71)90019-6

Klemm, 1972, Accelerated curing of cementitious systems by carbon dioxide: part I. Portland cement, Cem. Concr. Res., 2, 567, 10.1016/0008-8846(72)90111-1

Bukowski, 1979, Reactivity and strength development of CO2 activated non-hydraulic calcium silicates, Cement Concrete Res., 9, 57, 10.1016/0008-8846(79)90095-4

Goodbrake, 1979, Reaction of beta-dicalcium silicate and tricalcium silicate with carbon dioxide and water vapor, J. Am. Ceram. Soc., 62, 168, 10.1111/j.1151-2916.1979.tb19046.x

Chang, 2016, The role of β-C2S and γ-C2S in carbon capture and strength development, Mater. Struct., 1

Goto, 1995, Calcium silicate carbonation products, J. Am. Ceram. Soc., 78, 2867, 10.1111/j.1151-2916.1995.tb09057.x

Shtepenko, 2006, The effect of carbon dioxide on β-dicalcium silicate and Portland cement, Chem. Eng. J., 118, 107, 10.1016/j.cej.2006.02.005

Ashraf, 2016, Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials, J. Mater. Sci., 51, 6173, 10.1007/s10853-016-9909-4

Berger, 1979, Stabilization of silicate structures by carbonation, Cem. Concr. Res., 9, 649, 10.1016/0008-8846(79)90150-9

Rostami, 2012, Microstructure of cement paste subject to early carbonation curing, Cem. Concr. Res., 42, 186, 10.1016/j.cemconres.2011.09.010

Richardson, 1999, The nature of CSH in hardened cements, Cem. Concr. Res., 29, 1131, 10.1016/S0008-8846(99)00168-4

Richardson, 2004, Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of CSH: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland ce ast-furnace slag, metakaolin, or silica fume, Cem. Concr. Res., 34, 1733, 10.1016/j.cemconres.2004.05.034

Morandeau, 2015, In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium–silicate–hydrate gel, J. Mater. Chem. A, 3, 8597, 10.1039/C5TA00348B

Skinner, 2010, Nanostructure of calcium silicate hydrates in cements, Phys. Rev. Lett., 104, 195502, 10.1103/PhysRevLett.104.195502

Guan, 2016, The hardening behavior of γ-C2S binder using accelerated carbonation, Constr. Build. Mater., 114, 204, 10.1016/j.conbuildmat.2016.03.208

Huijgen, 2006, Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process, Chem. Eng. Sci., 61, 4242, 10.1016/j.ces.2006.01.048

Berger, 1972, Accelerated curing of cementitious systems by carbon dioxide: part II. Hydraulic calcium silicates and aluminates, Cem. Concr. Res., 2, 647, 10.1016/0008-8846(72)90002-6

Fernández-Carrasco, 2008, Supercritical carbonation of calcium aluminate cement, Cem. Concr. Res., 38, 1033, 10.1016/j.cemconres.2008.02.013

Lange, 1997, Effect of carbonation on properties of blended and non-blended cement solidified waste forms, J. Hazard. Mater., 52, 193, 10.1016/S0304-3894(96)01807-9

Grounds, 1988, Carbonation of ettringite by atmospheric carbon dioxide, Thermochim. Acta, 135, 347, 10.1016/0040-6031(88)87407-0

Nishikawa, 1992, Decomposition of synthesized ettringite by carbonation, Cem. Concr. Res., 22, 6, 10.1016/0008-8846(92)90130-N

Zheng, 1991, MgO-type delayed expansive cement, Cem. Concr. Res., 21, 1049, 10.1016/0008-8846(91)90065-P

Mo, 2014, MgO expansive cement and concrete in China: past, present and future, Cem. Concr. Res., 57, 1, 10.1016/j.cemconres.2013.12.007

Walling, 2016, Magnesia-based cements a journey of 150 years, and cements for the future?, Chem. Rev., 116, 4170, 10.1021/acs.chemrev.5b00463

Gao, 2008, Production of MgO-type expansive agent in dam concrete by use of industrial by-products, Build. Environ., 43, 453, 10.1016/j.buildenv.2007.01.037

Gao, 2013, Research on autogenous volume deformation of concrete with MgO, Constr. Build. Mater., 40, 998, 10.1016/j.conbuildmat.2012.11.025

Tang, 1998, Expansion of cement containing crystalline magnesia with and without fly ash and slag, Cement Concr. Aggregates, 20, 180, 10.1520/CCA10452J

Mo, 2010, Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials, Cem. Concr. Res., 40, 437, 10.1016/j.cemconres.2009.09.025

Vandeperre, 2008, Microstructures of reactive magnesia cement blends, Cem. Concr. Compos., 30, 706, 10.1016/j.cemconcomp.2008.05.002

Chatterji, 1995, Mechanism of expansion of concrete due to the presence of dead-burnt CaO and MgO, Cem. Concr. Res., 25, 51, 10.1016/0008-8846(94)00111-B

Vandeperre, 2007, Accelerated carbonation of reactive MgO cements, Adv. Cem. Res., 19, 67, 10.1680/adcr.2007.19.2.67

De Silva, 2009, Chemical: microstructural and strength development of calcium and magnesium carbonate binders, Cem. Concr. Res., 39, 460, 10.1016/j.cemconres.2009.02.003

Davies, 1973, The transformation of nesquehonite into hydromagnesite, Chem. Geol., 12, 289, 10.1016/0009-2541(73)90006-5

Jauffret, 2015, On the thermal decomposition of nesquehonite, J. Therm. Anal. Calorim., 122, 601, 10.1007/s10973-015-4756-0

Walling, 2016, A discussion of the papers Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements and Enhancing the carbonation of MgO cement porous blocks through improved curing conditions, by C. Unluer & A. Al-Tabbaa, Cem. Concr. Res., 79, 424, 10.1016/j.cemconres.2015.09.010

Ballirano, 2010, The thermal behaviour and structural stability of nesquehonite, MgCO3·3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: new constraints on CO2 sequestration within minerals, J. Hazard. Mater., 178, 522, 10.1016/j.jhazmat.2010.01.113

Shi, 2012, Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures, Constr. Build. Mater., 26, 257, 10.1016/j.conbuildmat.2011.06.020

Zhang, 2016, Early age carbonation curing for precast reinforced concretes, Constr. Build. Mater., 113, 134, 10.1016/j.conbuildmat.2016.03.048

Morshed, 2013, Influence of moisture content on CO2 uptake in lightweight concrete subject to early carbonation, J. Sustainable Cement-Based Mater., 2, 144, 10.1080/21650373.2013.797373

El-Hassan, 2013, Effect of initial curing on carbonation of lightweight concrete masonry units, ACI Mater. J., 110

Fang, 2017, Rapid hardening β-C2S mineral and microstructure changes activated by accelerated carbonation curing, J. Therm. Anal. Calorim., 1

El-Hassan, 2013, Reaction products in carbonation-cured lightweight concrete, J. Mater. Civ. Eng., 25, 799, 10.1061/(ASCE)MT.1943-5533.0000638

Rostami, 2011, Carbonation curing versus steam curing for precast concrete production, J. Mater. Civ. Eng., 24, 1221, 10.1061/(ASCE)MT.1943-5533.0000462

Jang, 2016, Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement, Cem. Concr. Res., 82, 50, 10.1016/j.cemconres.2016.01.001

Mo, 2016, Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing, Cem. Concr. Res., 88, 217, 10.1016/j.cemconres.2016.05.013

Kashef-Haghighi, 2009, CO2 sequestration in concrete through accelerated carbonation curing in a flow-through reactor, Ind. Eng. Chem. Res., 49, 1143, 10.1021/ie900703d

Kashef-Haghighi, 2015, Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing, Cem. Concr. Res., 67, 1, 10.1016/j.cemconres.2014.07.020

García-González, 2008, New insights on the use of supercritical carbon dioxide for the accelerated carbonation of cement pastes, J. Supercrit. Fluids, 43, 500, 10.1016/j.supflu.2007.07.018

Shi, 2012, Factors affecting kinetics of CO2 curing of concrete, J. Sustainable Cement-Based Mater., 1, 24, 10.1080/21650373.2012.727321

Ahmad, 2017, Effects of carbonation pressure and duration on strength evolution of concrete subjected to accelerated carbonation curing, Constr. Build. Mater., 136, 565, 10.1016/j.conbuildmat.2017.01.069

Monkman, 2010, Integration of carbon sequestration into curing process of precast concrete, Can. J. Civ. Eng., 37, 302, 10.1139/L09-140

Tu, 2016, Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes, Cem. Concr. Compos., 72, 9, 10.1016/j.cemconcomp.2016.05.019

Zhan, 2016, Materials characteristics affecting CO2 curing of concrete blocks containing recycled aggregates, Cem. Concr. Compos., 67, 50, 10.1016/j.cemconcomp.2015.12.003

Shao, 2006, A new CO2 sequestration process via concrete products production, EIC Climate Change Technol.

Abdullahi, 2016, Characterization and predictive reaction model for cement-sand-kaolin composite for CO2 sequestration, J. CO2 Utili., 16, 169, 10.1016/j.jcou.2016.06.008

Monkman, 2006, Assessing the carbonation behavior of cementitious materials, J. Mater. Civ. Eng., 18, 768, 10.1061/(ASCE)0899-1561(2006)18:6(768)

He, 2016, Effect of further water curing on compressive strength and microstructure of CO2-cured concrete, Cem. Concr. Compos., 72, 80, 10.1016/j.cemconcomp.2016.05.026

Taylor, 1997

Huntzinger, 2009, Carbon dioxide sequestration in cement kiln dust through mineral carbonation, Environ. Sci. Technol., 43, 1986, 10.1021/es802910z

Scrivener, 2015

Monkman, 2009, Carbonation curing of slag-cement concrete for binding CO2 and improving performance, J. Mater. Civil Eng., 22, 296, 10.1061/(ASCE)MT.1943-5533.0000018

Mo, 2012, Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO, Cem. Concr. Res., 42, 769, 10.1016/j.cemconres.2012.02.017

Yang, 2004, Thermogravimetric analysis- Fourier transform infrared analysis of palm oil waste pyrolysis, Energy Fuels, 18, 1814, 10.1021/ef030193m

Villain, 2007, Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry, Cem. Concr. Res., 37, 1182, 10.1016/j.cemconres.2007.04.015

Fushimi, 2003, Effect of heating rate on steam gasification of biomass: 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution, Ind. Eng. Chem. Res., 42, 3929, 10.1021/ie0300575

Rilem, 1984, 18, Measurement of hardened concrete carbonation depth, RILEM draft recommendation, Mater. Struct., 17, 435, 10.1007/BF02473984

Chang, 2006, The experimental investigation of concrete carbonation depth, Cem. Concr. Res., 36, 1760, 10.1016/j.cemconres.2004.07.025

Lo, 2002, Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy, Build. Environ., 37, 507, 10.1016/S0360-1323(01)00052-X

Rostami, 2011, Durability of concrete pipes subjected to combined steam and carbonation curing, Constr. Build. Mater., 25, 3345, 10.1016/j.conbuildmat.2011.03.025

Anstice, 2005, The pore solution phase of carbonated cement pastes, Cem. Concr. Res., 35, 377, 10.1016/j.cemconres.2004.06.041

Shao, 2013, Accelerated carbonation of portland limestone cement, J. Mater. Civ. Eng., 26, 117, 10.1061/(ASCE)MT.1943-5533.0000773

Shao, 2014

Shao, 2006, CO2 sequestration using calcium-silicate concrete, Can. J. Civ. Eng., 33, 776, 10.1139/l05-105

Zhang, 2016, Carbonation curing of precast fly ash concrete, J. Mater. Civ. Eng., 04016127, 10.1061/(ASCE)MT.1943-5533.0001649

Zhang, 2016, Effect of early carbonation curing on chloride penetration and weathering carbonation in concrete, Constr. Build. Mater., 123, 516, 10.1016/j.conbuildmat.2016.07.041

El-Hassan, 2015, Early carbonation curing of concrete masonry units with Portland limestone cement, Cement Concr Comp., 62, 168, 10.1016/j.cemconcomp.2015.07.004

Sulapha, 2003, Carbonation of concrete containing mineral admixtures, J. Mater. Civ. Eng., 15, 134, 10.1061/(ASCE)0899-1561(2003)15:2(134)

Kulakowski, 2009, Carbonation-induced reinforcement corrosion in silica fume concrete, Constr. Build. Mater., 23, 1189, 10.1016/j.conbuildmat.2008.08.005

Papadakis, 2000, Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress, Cem. Concr. Res., 30, 291, 10.1016/S0008-8846(99)00249-5

Shao, 2011, Early-age carbonation curing of concrete using recovered CO2, Concr. Int., 33, 50

El-Hassan, 2014, Dynamic carbonation curing of fresh lightweight concrete, Mag. Concr. Res., 66, 708, 10.1680/macr.13.00222

Leea, 2016, The application of CO2 in the curing process of cement brick products, J. Ceram. Process. Res., 17, 17

Junior, 2015, The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes, Constr. Build. Mater., 77, 448, 10.1016/j.conbuildmat.2014.12.072

Morandeau, 2014, Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure changes and moisture properties, Cem. Concr. Res., 56, 153, 10.1016/j.cemconres.2013.11.015

Johannesson, 2001, Microstructural changes caused by carbonation of cement mortar, Cem. Concr. Res., 31, 925, 10.1016/S0008-8846(01)00498-7

Azar, 2013

Shoji, 2015, Inhibitory effect of alkali-silica reaction by the carbonation reaction, Cement Sci. Concr. Technol., 69, 6

Cabral, 2017, Evaluation of the effect of accelerated carbonation in cement–bagasse panels after cycles of wetting and drying, J. Mater. Civ. Eng., 04017018, 10.1061/(ASCE)MT.1943-5533.0001861

Böhni, 2005

Hilsdorf, 2004, vol. 12

Lange, 1996, The effect of accelerated carbonation on the properties of cement-solidified waste forms, Waste Manage., 16, 757, 10.1016/S0956-053X(97)00022-6

Walton, 1997, Role of carbonation in transient leaching of cementitious wasteforms, Environ. Sci. Technol., 31, 2345, 10.1021/es960964j

Sakai, 2016, Polymer-modified cement using belite-rich cement and carbonation reaction, Constr. Build. Mater., 110, 333, 10.1016/j.conbuildmat.2015.10.161

Higuchi, 2014, Development of a new ecological concrete with CO2 emissions below zero, Constr. Build. Mater., 67, 338, 10.1016/j.conbuildmat.2014.01.029

Daval, 2009, Mechanism of wollastonite carbonation deduced from micro-to nanometer length scale observations, Am. Mineral., 94, 1707, 10.2138/am.2009.3294

Oelkers, 2008, Mineral carbonation of CO2, Elements, 4, 333, 10.2113/gselements.4.5.333

Ashraf, 2016, Multiscale characterization of carbonated wollastonite paste and application of homogenization schemes to predict its effective elastic modulus, Cem. Concr. Compos., 72, 284, 10.1016/j.cemconcomp.2016.05.023

Ashraf, 2016, Nanoindentation assisted investigation on the viscoelastic behavior of carbonated cementitious matrix: influence of loading function, Constr. Build. Mater., 127, 904, 10.1016/j.conbuildmat.2016.10.021

Bonenfant, 2008, CO2 sequestration potential of steel slags at ambient pressure and temperature, Ind. Eng. Chem. Res., 47, 7610, 10.1021/ie701721j

Huijgen, 2005, Mineral CO2 sequestration by steel slag carbonation, Environ. Sci. Technol., 39, 9676, 10.1021/es050795f

Huijgen, 2006, Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms, Environ. Sci. Technol., 40, 2790, 10.1021/es052534b

Montes-Hernandez, 2009, Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash, J. Hazard. Mater., 161, 1347, 10.1016/j.jhazmat.2008.04.104

Uliasz-Bocheńczyk, 2009, Estimation of CO2 sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland, Energy Procedia, 1, 4873, 10.1016/j.egypro.2009.02.316

Rendek, 2006, Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash, J. Hazard. Mater., 128, 73, 10.1016/j.jhazmat.2005.07.033

Johnson, 2003, Solidification of stainless steel slag by accelerated carbonation, Environ. Technol., 24, 671, 10.1080/09593330309385602

Mahoutian, 2014, Carbon dioxide activated ladle slag binder, Constr. Build. Mater., 66, 214, 10.1016/j.conbuildmat.2014.05.063

Ghouleh, 2015, High-strength KOBM steel slag binder activated by carbonation, Constr. Build. Mater., 99, 175, 10.1016/j.conbuildmat.2015.09.028

Unluer, 2014, Enhancing the carbonation of MgO cement porous blocks through improved curing conditions, Cem. Concr. Res., 59, 55, 10.1016/j.cemconres.2014.02.005

Pu, 2016, Investigation of carbonation depth and its influence on the performance and microstructure of MgO cement and PC mixes, Constr. Build. Mater., 120, 349, 10.1016/j.conbuildmat.2016.05.067

Mo, 2016, Development of low-carbon cementitious materials via carbonating Portland cement–fly ash–magnesia blends under various curing scenarios: a comparative study, J. Clean. Prod.

Mo, 2013, Accelerated carbonation–A potential approach to sequester CO2 in cement paste containing slag and reactive MgO, Cem. Concr. Compos., 43, 69, 10.1016/j.cemconcomp.2013.07.001

Panesar, 2013, Properties of binary and ternary reactive MgO mortar blends subjected to CO2 curing, Cem. Concr. Compos., 38, 40, 10.1016/j.cemconcomp.2013.03.009

Dheilly, 1999, Hydromagnesite development in magnesian lime mortars, Mater. Sci. Eng. A, 268, 127, 10.1016/S0921-5093(99)00085-4

Monkman, 2009, Carbonated ladle slag fines for carbon uptake and sand substitute, J. Mater. Civ. Eng., 21, 657, 10.1061/(ASCE)0899-1561(2009)21:11(657)

Chang, 2007, Manufacture of electric arc furnace slag aggregate and concrete through carbonation curing, J. Chin. Ceram. oc., 35, 1264

Ghouleh, 2017, Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete, J. CO2 Util., 18, 125, 10.1016/j.jcou.2017.01.009

Zhang, 2015, Performance enhancement of recycled concrete aggregates through carbonation, J. Mater. Civ. Eng., 27, 04015029, 10.1061/(ASCE)MT.1943-5533.0001296

Xuan, 2016, Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation, J. Clean. Prod., 133, 1235, 10.1016/j.jclepro.2016.06.062

Liu, 2001, Development of a CO2 solidification method for recycling autoclaved lightweight concrete waste, J. Mater. Sci. Lett., 20, 1791, 10.1023/A:1012591318077

Schmidt, E., Process for accelerating hardening of cement with fibre-reinforced and cement-bound plates. 1988, US Patents.

Soroushian, P., Hsu, J.-W., Accelerated curing of cement-based materials. 1999, US Patents.

Niven, R., Monkman, G.S., Forgeron, D., Carbon dioxide treatment of concrete upstream from product mold. 2014, US Patents.

Monkman, 2016, Properties and durability of concrete produced using CO2 as an accelerating admixture, Cem. Concr. Compos., 74, 218, 10.1016/j.cemconcomp.2016.10.007

Sahu, 2013, Solidia Cement™

Atakan, V., et al., Composite materials and bonding elements from carbonation of calcium silicate and methods thereof. 2016, US Patents.

Hu, X., Ravikumar, D., Patten, D. Rapid curing of thin composite material sections. 2014, US Patents.

Henn, F., et al., Pavers and block composite materials and methods of preparation thereof. 2014, US Patents.

Krishnan, J., et al., Composite railroad ties and methods of production and uses thereof. 2016, US Patents.

Farnam, 2016, Performance of carbonated calcium silicate based cement pastes and mortars exposed to NaCl and MgCl2 deicing salt, Constr. Build. Mater., 111, 63, 10.1016/j.conbuildmat.2016.02.098

Yoshioka, 2013, New ecological concrete that reduces CO2 emissions below zero level∼new method for CO2 capture and storage∼, Energy Procedia, 37, 6018, 10.1016/j.egypro.2013.06.530

Vlasopoulos, N., Cheeseman, C.R., Binder composition. 2013, US Patents.

Vlasopoulos, N., Process for producing cement binder compositions containing magnesium. 2011, US Patents.

Pade, 2007, The CO2 uptake of concrete in a 100 year perspective, Cem. Concr. Res., 37, 1348, 10.1016/j.cemconres.2007.06.009

Xi, 2016, Substantial global carbon uptake by cement carbonation, Nat. Geosci., 9, 880, 10.1038/ngeo2840

Mahoutian, 2016, Production of cement-free construction blocks from industry wastes, J. Clean. Prod., 137, 1339, 10.1016/j.jclepro.2016.08.012

Hossain, 2017

Wang, 2017, CO2 curing and fibre reinforcement for green recycling of contaminated wood into high-performance cement-bonded particleboards, J. CO2 Util., 18, 107, 10.1016/j.jcou.2017.01.018

Huijgen, 2007, Cost evaluation of CO2 sequestration by aqueous mineral carbonation, Energy Convers. Manage., 48, 1923, 10.1016/j.enconman.2007.01.035

Zhan, 2013, CO2 curing for improving the properties of concrete blocks containing recycled aggregates, Cem. Concr. Compos., 42, 1, 10.1016/j.cemconcomp.2013.04.013

Wang, 2007

China, 2016