Review on Y-type hexaferrite: Synthesis, characterization and properties
Tài liệu tham khảo
Okumura, 2011, Magnetism and magnetoelectricity of a U-type hexaferrite Sr4 Co2 Fe36 O60, Appl. Phys. Lett., 98, 2, 10.1063/1.3593371
Sun, 2017, Reprint of Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites for exceptional microwave shielding, Compos. Part A, 92, 190, 10.1016/j.compositesa.2016.10.030
Warhate, 2020, Structural, magnetic and thermo-magnetic properties of NiMn Y-Type strontium nano-hexaferrites, J. Alloy. Compd., 818, 10.1016/j.jallcom.2019.152830
Mukhtar, 2021, Investigation of crystal structure, dielectric response and magnetic properties of Tb3+ substituted Co2 Y-type barium hexaferrites, Solid State Sci., 113, 10.1016/j.solidstatesciences.2021.106549
R.A. Nandotaria and R.B. Jotania, “Formation and structural properties of cobalt doped Sr-Cu magnetic hexaferrite particles,” vol. 26303041, no. July, pp. 45–48, 2011.
You, 2019, Magnetic properties of Zn-substituted Y-type hexaferrites, Ba2ZnxFe2−xFe12O22, J. Magn. Magn. Mater., 471, 255, 10.1016/j.jmmm.2018.09.064
Murtaza, 2014, Structural and magnetic properties of Nd-Mn substituted Y-type hexaferrites synthesized by microemulsion method, J. Alloys Compd., 602, 122, 10.1016/j.jallcom.2014.02.156
Li, 2017, Structure and magnetic properties of CuO-substituted Co2Y hexaferrites for high frequency applications, J. Mater. Sci. Mater. Electron., 28, 2069, 10.1007/s10854-016-5768-7
Shams, 2015, Enhancing static and dynamic magnetic properties of Mg-Zn doped Co2Y-type hexaferrite as broadband microwave absorbing material, J. Optoelectron. Adv. Mater., 17, 614
Nikzad, 2015, Y-type strontium hexaferrite: the role of Al substitution, structural, and magnetic consequence, J. Supercond. Nov. Magn., 28, 3579, 10.1007/s10948-015-3194-3
Graetsch, 2018, Zn incorporation in X and Z-type hexagonal ferrites Ba(Zn,Fe)15O23 and Ba3(Zn,Fe)26O41, J. Chem. Crystallogr., 48, 177, 10.1007/s10870-018-0726-2
Azhar Khan, 2018, Structural elucidation and magnetic behavior evaluation of Cu-Cr doped BaCo-X hexagonal ferrites, J. Magn. Magn. Mater., 452, 73, 10.1016/j.jmmm.2017.12.034
Mohammed, 2021, Crystal structure refinement and the magnetic and electro-optical properties of Er3+–Mn2+-substituted Y-type barium hexaferrites, Ceram. Int., 47, 18455, 10.1016/j.ceramint.2021.03.169
Singh, 2018, A current review on the synthesis and magnetic properties of M-type hexaferrites material, WJCMP, 8, 36, 10.4236/wjcmp.2018.82004
Jasrotia, 2019, Analysis of optical and magnetic study of silver substituted SrW hexagonal ferrites, AIP Conf. Proc., 2142, 10.1063/1.5122448
Tang, 2018, Microstructure and characterization of W-type hexaferrite Ba1−xLaxFe22+Fe163+O27 prepared by solid state method, J. Magn. Magn. Mater., 452, 354, 10.1016/j.jmmm.2017.12.105
Nikmanesh, 2019, Study of the structural, magnetic, and microwave absorption properties of the simultaneous substitution of several cations in the barium hexaferrite structure, J. Alloys Compd., 775, 1101, 10.1016/j.jallcom.2018.10.051
Jamshaid, 2021, Sm-Co substituted m-type lead hexaferrite for dielectric properties and visible light driven methylene blue degradation in industrial wastewater, Desalin. Water Treat., 226, 431, 10.5004/dwt.2021.27274
P.R. Moharkar, S.R. Gawali, K.G. Rewatkar, and V.M. Nanoti, “Improvisation of structural, electrical and magnetic properties of nanocrystalline Ca 2 -Y hexaferrite on Al-substitution, IJCA Proceedings on International Conference on Benchmarks in Engineering Science and Technology, 2012 ICBEST (2). 5–9, 2012.
Ahmad, 2013, Investigation of Co-substituted nanosized Mn2Y-hexaferrites synthesized by sol-gel autocombustion method, J. Mater. Eng. Perform., 22, 3909, 10.1007/s11665-013-0662-4
Adeela, 2016, Magnetic and dielectric investigations of Mn-doped Ba hexaferrite nanoparticles by hydrothermal approach, J. Electron. Mater., 45, 5853, 10.1007/s11664-016-4806-9
Chandel, 2020, A review on structural, electrical and magnetic properties of Y-type hexaferrites synthesized by different techniques for antenna applications and microwave absorbing characteristic materials, AIMS Mater. Sci., 7, 244, 10.3934/matersci.2020.3.244
Buršík, 2013, Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition, J. Solid State Chem., 203, 100, 10.1016/j.jssc.2013.04.026
Gawali, 2014, Electrical properties of Y-type substituted calcium hexaferrite, Int. J. Res. Biosci. Agric. Technol., 114
Suthar, 2022, Structural, electromagnetic, and Ku-band absorption characterization of La-Mg substituted Y-type barium hexaferrite for EMI shielding application, Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 283, 10.1016/j.mseb.2022.115801
Behera, 2018, Magnetic and dielectric spectroscopic studies in Zn substituted Y-type barium hexaferrite, J. Alloys Compd., 767, 712, 10.1016/j.jallcom.2018.07.123
Salunkhe, 2013, Spectroscopic study of Al 3+ -substituted strontium hexaferrite, Int. J. Met., 2013, 1, 10.1155/2013/216926
Sugimoto, 1982, Properties of ferroxplana-type hexagonal ferrites, Handb. Ferromagn. Mater., 3, 393
Georgieva, 2021, Effect of Ni and Al substitution on the magnetic properties of Y-type hexaferrite Ba0.5Sr1.5Zn0.5Ni1.5Fe11.92Al0.08O22powders, J. Phys. Conf. Ser., 1859, 8, 10.1088/1742-6596/1859/1/012067
Koutzarova, 2022, Phase transitions in magneto-electric hexaferrites, ACS Omega, 7, 44485, 10.1021/acsomega.2c05689
Manendar, 2020, Mössbauer spectroscopy study of Ba0.5Sr1.5Co2-xNixFe12O22 hexaferrite system, AIP Conference Proceedings, 2265, 030545, 10.1063/5.0017308
Lehlooh, 2020, Mössbauer spectroscopy study of Y-type hexaferrite (Ba 2 Co 2 Fe 12 O 22) prepared by the co-precipitation method, Hyperfine Interact, 241, 10.1007/s10751-019-1676-6
Manendar, 2020, Mössbauer spectroscopy study of Ba0.5Sr1.5Co2-xNixFe12O22 hexaferrite system, AIP Conf. Proc., 2265, 2
Koutzarova, 2018, Study of the Properties of Co-Substituted Ba2Mg2Fe12O22 Hexaferrites
Koutzarova, 2019, Study of the structural and magnetic properties of co-substituted Ba2Mg2Fe12O22 hexaferrites synthesized by sonochemical co-precipitation, Materials, 12, 1, 10.3390/ma12091414
Lim, 2012, Investigation of magnetic properties of non-magnetic ion (Al, Ga, In) doped Ba 2Mg 0.5Co 1.5Fe 12O 22, J. Appl. Phys., 111, 2013, 10.1063/1.3679023
Chen, 2022, Investigation on the structural, magnetic, and dielectric properties of Ni2+–Zr4+ co-doped Y-type hexaferrite Ba2Ni2Fe12O22, J. Mater. Sci. Mater. Electron., 33, 16889, 10.1007/s10854-022-08568-0
Kimura, 2012, Magnetoelectric hexaferrites, Annu. Rev. Condens. Matter Phys., 3, 93, 10.1146/annurev-conmatphys-020911-125101
Wu, 2015, Field-dependent magnetoelectric effects in polycrystalline Co2Y-Type Ba0.5Sr1.5Co2(Fe1-xAlx)12O22 hexaferrites, J. Am. Ceram. Soc., 98, 2498, 10.1111/jace.13637
Wu, 2020, Ni doping effect on the magnetic properties of polycrystalline Y-type hexaferrite Ba0.5Sr1.5Zn2Fe12−xNixO22, J. Mater. Sci. Mater. Electron., 31, 6538, 10.1007/s10854-020-03210-3
Zhang, 2016, Mg doping effect on the magnetic properties of Y-type hexaferrite Ba0.5Sr1.5Zn2−xMgxFe12O22, J. Alloys Compd., 689, 75, 10.1016/j.jallcom.2016.07.318
Khanduri, 2012, Structural, dielectric, magnetic, and nuclear magnetic resonance studies of multiferroic Y-type hexaferrites, J. Appl. Phys., 112, 10.1063/1.4754532
Park, 2021, Control of magnetoelectric coupling in the Co2 y -type hexaferrites, Phys. Rev. Mater., 5, 1
Georgieva, 2018, A comparative study of the morphology of Y-type hexaferrite powders obtained by sol-gel auto-combustion and ultrasonic co-precipitation, NATO Sci. Peace Secur. Ser. B Phys. Biophys., 31, 10.1007/978-94-024-1298-7_3
Georgieva, 2019, Structural and magnetic characterization of Y-type hexaferrite powders prepared by sol-gel auto-combustion and sonochemistry, J. Magn. Magn. Mater., 477, 131, 10.1016/j.jmmm.2019.01.033
Y. Chang, K. Zhai and Y. Sun, Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22, Chinese Phys. B in press, 2053-1583, doi:10.1088/1674-1056/ab696c.
Bayrakdar, 2016, Fabrication, magnetic and microwave absorbing properties of Ba2Co2Cr2Fe12O22 hexagonal ferrites, J. Alloys Compd., 674, 185, 10.1016/j.jallcom.2016.03.055
Basandrai, 2017, Radiation losses in the microwave X band in Al-Cr substituted Y-type hexaferrites, Chinese Phys. Lett., 34, 1, 10.1088/0256-307X/34/4/044101
Chandel, 2020, Structural, magnetic and Mössbauer analysis of lanthanum and nickel doped Co2Y-type hexaferrite nanomaterial matrix synthesized by sol-gel auto-combustion technique, J. Mol. Struct., 1205, 10.1016/j.molstruc.2019.127623
Warhate, 2020, Thermal and infrared spectral analysis of TiCo doped NiZn Y-type strontium hexaferrite synthesized by sol gel auto-combustion, Mater. Today Proc., 29, 1055, 10.1016/j.matpr.2020.04.712
Temuujin, 2004, Synthesis of Y-type hexaferrites via a soft mechanochemical route, J. Solid State Chem., 177, 3903, 10.1016/j.jssc.2004.06.051
Ali, 2014, Role of grain boundaries in the conduction of Eu-Ni substituted Y-type hexaferrites, J. Magn. Magn. Mater., 362, 115, 10.1016/j.jmmm.2014.03.022
Giriya, 2014, Influence of Structural, Electrical and Magnetic Behaviour of Sr2Al2Fe12O22 Nano Sized Powders Using Chemical Co-Precipitation Technic, Global Journal of engineering Science and researches, 1, 1
Seo, 2012, Thermal plasma synthesis of nano-sized powders, Nucl. Eng. Technol., 44, 9, 10.5516/NET.77.2012.002
Behera, 2018, Impedance spectroscopy and magnetic properties of Mg doped Y-type barium hexaferrite, J. Mater. Sci. Mater. Electron., 29, 20206, 10.1007/s10854-018-0153-3
Sahu, 2018, Electrical properties of Y-type hexaferrite, J. Adv. Dielectr., 8, 10.1142/S2010135X18500224
Batool, 2022, Synthesis, characterization, dielectric and magnetic properties of substituted Y-type hexaferrites, J. Mater. Sci. Mater. Electron., 33, 16183, 10.1007/s10854-022-08508-y
Nadeem, 2022, Structural, dielectric, and magnetic properties of CaBaCo2-xZnxNdyFe12-yO22 Y-type hexaferrites, J Mater Sci: Mater Electron, 33, 6294
Nassar, 2014, A novel synthetic route for magnesium aluminate (MgAl2O 4) nanoparticles using sol-gel auto combustion method and their photocatalytic properties, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 131, 329, 10.1016/j.saa.2014.04.040
Sutka, 2012, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Front. Mater. Sci., 6, 128, 10.1007/s11706-012-0167-3
Adhikari, 2021, Nanotechnology in Environmental Soil Science, Soil Sci. Fundam. to Recent Adv., 297, 10.1007/978-981-16-0917-6_14
Gordani, 2014, Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method, Ceram. Int., 40, 4945, 10.1016/j.ceramint.2013.10.096
Hsiang, 2007, Hexagonal ferrite powder synthesis using chemical coprecipitation, Mater. Chem. Phys., 104, 1, 10.1016/j.matchemphys.2007.02.030
ping WANG, 2008, Comparison of the sol-gel method with the coprecipitation technique for preparation of hexagonal barium ferrite, Chem. Res. Chinese Univ., 24, 525, 10.1016/S1005-9040(08)60110-5
Lehlooh, 2020, Mössbauer spectroscopy study of Y-type Hexaferrite (Ba2Co2Fe12O22) prepared by the co-precipitation method, Hyperfine Interact, 241
Hou, 2020, Simple hydrothermal synthesis of molybdenum disulfide and its application for a large-area photodetector, Cryst. Res. Technol., 55, 1, 10.1002/crat.202000053
Byrappa, 2007, Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Charact. Mater., 53, 117, 10.1016/j.pcrysgrow.2007.04.001
Feng, 2001, New materials in hydrothermal synthesis, Acc. Chem. Res., 34, 239, 10.1021/ar0000105
Zhang, 2019, Hydrothermal synthesis of SnO2 nanorod as anode materials for lithium-ion battery, Nano, 14, 1, 10.1142/S1793292019501091
Wang, 2014, Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications, Nanoscale, 6, 4418, 10.1039/c3nr06025j
Khadzhiev, 2013, Trends in the synthesis of metal oxide nanoparticles through reverse microemulsions in hydrocarbon media, Adv. Colloid Interface Sci., 197–198, 132, 10.1016/j.cis.2013.05.003
Abazari, 2014, Characterization and optical properties of spherical WO3 nanoparticles synthesized via the reverse microemulsion process and their photocatalytic behavior, Mater. Lett., 133, 208, 10.1016/j.matlet.2014.07.032
Xu, 2007, Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique, J. Phys. Chem. C, 111, 5866, 10.1021/jp068955c
Malik, 2012, Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials. 1st Nano Update, Arab. J. Chem., 5, 397, 10.1016/j.arabjc.2010.09.027
Borisov, 2012, X-ray diffraction analysis: a brief history and achievements of the first century, J. Struct. Chem., 53, 1, 10.1134/S0022476612070013
Bunaciu, 2015, X-Ray Diffraction: instrumentation and Applications, Crit. Rev. Anal. Chem., 45, 289, 10.1080/10408347.2014.949616
A. Klute, L.D. Whittig & W.R. Allardice, X-Ray Diffraction Techniques. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. (1986). doi:10.2136/sssabookser5.1.2ed.c12.
Kullenberg, 2018, Chapter 3: experimental Techniques, Pollut. Transf. Transp. Sea, 161, 10.1201/9781351075855-3
Harris, 2008
Carol, 2022, Crystal-structure analysis, Raman spectroscopy, dielectric measurements, magnetic and optical properties of Cr3+–Ni2+-substituted Co2Y-type barium hexaferrites, Mater. Res. Bull., 145
Jotania, 2012, Y-type hexaferrites: structural, dielectric and magnetic properties, Solid State Phenom., 189, 209, 10.4028/www.scientific.net/SSP.189.209
Ferraro, 1999, History of Fourier transform-infrared spectroscopy, Spectroscopy, 14, 28
Ganzoury, 2015, Introduction to fourier transform infrared spectrometry, Renew. Sustain. Energy Rev., 50, 1
Sharma, 2018, 1
Faghihzadeh, 2016, Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles, Nanotechnol. Environ. Eng., 1, 1, 10.1007/s41204-016-0001-8
K. Mikroskop, E. Imbasan, P. Medan, and D.I. Bti, “47111897”.
Janssen, 2005, 1
Yakowitz, 1968, Quantitative electron probe microanalysis: absorption correction uncertainty, Mikrochim. Acta, 56, 182, 10.1007/BF01216121
Ngo, 1999, Energy Dispersive Spectroscopy, Fail. Anal. Integr. Circuits, 205, 10.1007/978-1-4615-4919-2_12
Mohammed, 2018, Scanning electron microscopy (sem): a review, 77
Long, 2021, Application of spectroscopy in additive manufacturing, Materials, 14, 1, 10.3390/ma14010203
Hall, 1992, A history of impedance measurements, Hist. Arch. Gen. Radio Co., 1, 64
Barrettino, 2018, A low-cost, low-power, 10MHz multifrequency impedance analyzer, I2MTC 2018 2018 IEEE Int. Instrum. Meas. Technol. Conf. Discov. New Horizons Instrum. Meas. Proc, 1
Sayers, 1948, TNMTS01
Belal Hossen, 2015, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4, J. Adv. Ceram., 4, 217, 10.1007/s40145-015-0152-2
Mazen, 2016, AC impedance studies on Li0.5+0.5xGexFe2.5−1.5xO4 system, Appl. Phys. A Mater. Sci. Process., 122, 1, 10.1007/s00339-015-9554-9
Kolekar, 2014, Grain and grain boundary effects on the frequency and temperature dependent dielectric properties of cobalt ferrite-hafnium composites, Solid State Commun., 184, 34, 10.1016/j.ssc.2013.12.003
Chejara, 2022, Dielectric studies for rare earth doped magnesium ferrite material, Environ. Sci. Pollut. Res., 4, 4
Lal, 2019, Rietveld refinement, Raman, optical, dielectric, Mössbauer and magnetic characterization of superparamagnetic fcc-CaFe2O4 nanoparticles, Ceram. Int., 45, 5837, 10.1016/j.ceramint.2018.12.050
Verma, 2008, The effect on dielectric losses in lithium ferrite by cerium substitution, J. Alloys Compd., 466, 404, 10.1016/j.jallcom.2007.11.056
Worsfold, 1993, UV—visible spectroscopy and its applications, Anal. Chim. Acta, 284, 245, 10.1016/0003-2670(93)80039-N
Antonov, 2000, Resolution of overlapping UV–Vis absorption bands and quantitative analysis, Chem. Soc. Rev., 29, 217, 10.1039/a900007k
N. Kaur, “UV–Visible spectroscopy Contents :,” no. August, pp. 1–13, 2018.
Mohammed, 2022, Materials today : proceedings study of structural, morphological, optical bandgap and Urbach ’ s tail of Ni 2 + substituted Co 2 Y-type strontium hexaferrite
Dolgonos, 2016, Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method, J. Solid State Chem., 240, 43, 10.1016/j.jssc.2016.05.010
Ramzan, 2021, Investigation of structural and optical properties of Ni-doped M- type nano-ferrites, J. Supercond. Nov. Magn, 10.1007/s10948-020-05751-4
Kaur, 2017, Optical and multiferroic properties of Gd-Co substituted barium hexaferrite, Cryst. Res. Technol., 52, 1, 10.1002/crat.201700098
Al-Gaashani, 2013, Rapid synthesis and optical properties of hematite (α-Fe 2O3) nanostructures using a simple thermal decomposition method, J. Alloys Compd., 550, 395, 10.1016/j.jallcom.2012.10.150
Nishihara, 2015, Coupling between Mott excitation and d-d transitions in CoV2 O4, Phys. Rev. B Condens. Matter Mater. Phys., 92, 1, 10.1103/PhysRevB.92.140401
Novelli, 2012, Ultrafast optical spectroscopy of the lowest energy excitations in the Mott insulator compound YVO 3: evidence for Hubbard-type excitons, Phys. Rev. B Condens. Matter Mater. Phys., 86, 10.1103/PhysRevB.86.165135
Hiraoka, 2011, Dd excitations in three-dimensional q-space: a nonresonant inelastic X-ray scattering study on NiO, EPL, 96, 1, 10.1209/0295-5075/96/37007
Chiuzbăian, 2005, Localized Electronic Excitations in NiO Studied with Resonant Inelastic X-Ray Scattering at the Ni M Threshold: Evidence of Spin Flip, Phys. Rev. Lett., 95, 197402, 10.1103/PhysRevLett.95.197402
Foner, 1959, Versatile and sensitive vibrating-sample magnetometer, Rev. Sci. Instrum., 30, 548, 10.1063/1.1716679
Burgei, 2003, A simple vibrating sample magnetometer for use in a materials physics course, Am. J. Phys., 71, 825, 10.1119/1.1572149
Dodrill, 2015
First, 2006, 1
G. Martinek, S. Ruoho, and U. Wyss, “Magnetic Properties of Permanent Magnets & Measuring Techniques,” Arnold Magn. Technol. |, vol. 1, pp. 1–20.
Sayed, 2007, 9781107036
Dunsmore, 2020
Kaur, 2016, Synthesis of Co-Zr doped nanocrystalline strontium hexaferrites by sol-gel auto-combustion route using sucrose as fuel and study of their structural, magnetic and electrical properties, Ceram. Int., 42, 14475, 10.1016/j.ceramint.2016.06.053
Yasmin, 2020, Impact of Ho-Ni substitution on structural, morphological and dielectrical characteristics of BaFe12O19 M-type hexagonal ferrite, Phys. B Condens. Matter, 581
Fu, 2019, The effect of Sr doping on structural and dielectric properties of Ba2Co2Fe12O22 ceramics, J. Mater. Sci. Mater. Electron., 30, 21079, 10.1007/s10854-019-02477-5
Hosseinkhan Nejad, 2017, Enhancement of soft magnetic properties of La–Zn co-doped nanocrystalline Ni2Y hexaferrite, J. Magn. Magn. Mater., 423, 226, 10.1016/j.jmmm.2016.09.097
Guan, 2020, Electromagnetic wave absorption enhancement of double-layer structural absorbers based on carbon nanofibers and hollow Co2Y hexaferrite microfibers, J. Alloys Compd., 814, 10.1016/j.jallcom.2019.152302
Mahmood, 2016, Modification of the magnetic properties of Co2y hexaferrites by divalent and trivalent metal substitutions, Solid State Phenom., 241, 93, 10.4028/www.scientific.net/SSP.241.93
Song, 2016, The electromagnetic and microwave absorbing properties of polycrystalline Y-type Ba1.5Sr0.5CoZnFe12−xAlxO22 hexaferrites over the microwave range, J. Mater. Sci. Mater. Electron., 27, 4131, 10.1007/s10854-016-4272-4
Jotania, 2012, Microstructure and dielectric properties of Mn substituted Sr 2 Cu 2 Fe 12 O 22 (Cu 2 Y) hexaferrite powder, Int. J. Eng. Res. Appl., 2, 494
Zhao, 2009, Preparation and coercivity and saturation magnetization dependence of inductive heating property of Fe3O4 nanoparticles in an alternating current magnetic field for localized hyperthermia, J. Alloys Compd., 469, 215, 10.1016/j.jallcom.2008.01.083
Osaka, 1998, A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity, Nature, 392, 796, 10.1038/33888
de Julián Fernández, 2021, Progress and prospects of hard hexaferrites for permanent magnet applications, J. Phys. D Appl. Phys., 54
Chen, 2008, Perpendicularly oriented polycrystalline BaFe11.1Sc 0.9O19 hexaferrite with narrow FMR linewidths, J. Am. Ceram. Soc., 91, 2952, 10.1111/j.1551-2916.2008.02578.x
Vas'ko, 2002, High saturation magnetization films of FeCoCr, J. Appl. Phys., 91, 6818, 10.1063/1.1452657
Bankar, 2018, Synthesis of nanocrystalline Ca2Cu2Fe12O22 Y-type hexaferrites by the sol–gel combustion method in metal nitrates system, Ferroelectrics, 526, 187, 10.1080/00150193.2017.1360708
Basandrai, 2020, Magnetic properties of bismuth substituted strontium ferrite nanoparticles, Eur. J. Mol. Clin. Med., 7, 3432
Zhang, 2018, Indium doping effect on the magnetic properties of Y-type hexaferrite Ba0.5Sr1.5Zn2(Fe1-xInx)12O22, Curr. Appl. Phys., 18, 1001, 10.1016/j.cap.2018.05.017
Alizad Farzin, 2016, Synthesis behavior and magnetic properties of Mg-Ni co-doped Y-type hexaferrite prepared by sol-gel auto-combustion method, Mater. Chem. Phys., 178, 149, 10.1016/j.matchemphys.2016.04.082
Hirschner, 2017, Spin Seebeck effect in Y-type hexagonal ferrite thin films, Phys. Rev. B, 96, 1, 10.1103/PhysRevB.96.064428
Manendar, 2021, Cation distribution in Ni substituted Ba0.5Sr1.5Co2Fe12O22 Y-type hexagonal ferrites, Ceram. Int., 47, 9591, 10.1016/j.ceramint.2020.12.094
Liu, 2021, Strain-Mediated Magneto-Electric Effects in Coaxial Nanofibers of Y/W-Type Hexagonal Ferrites and Ferroelectrics, J. Compos. Sci., 5
Irfan, 2016, Hysteresis and electric modulus analysis of Y3+ doped MnNi-Y-type hexagonal ferrite, Ceram. Silikaty, 60, 34, 10.13168/cs.2016.0005
A.Moosavi, M.A.Bahrevar, A.R.Aghaei, Lead-free BNKT piezoelectric actuator, 10th Biennial Congress of the Iranian Ceramic Society & the First International Conference on Advanced Ceramics, (2016).
Chen, 2020, Colossal dielectric response and relaxation properties caused by Mg doping in Co2Y-Type hexaferrites, Ceram. Int., 46, 1551, 10.1016/j.ceramint.2019.09.123
Ahmad, 2013, Effects of Sr-substitution on the structural and magnetic behavior of Ba-based Y-type hexagonal ferrites, J. Alloys Compd., 580, 23, 10.1016/j.jallcom.2013.05.076
Koutzarova, 2018, Study of the Properties of Co-Substituted Ba2Mg2Fe12O22 Hexaferrites, ECMS, 1
Kim, 2020, Magnetic properties of polycrystalline Y-type hexaferrite Ba2-xSrxNi2(Fe1-yAly)12O22 using Mössbauer spectroscopy, AIP Adv., 10, 1, 10.1063/1.5130045
Zhuravlev, 2022, Static and dynamic magnetic properties of polycrystalline hexaferrites of the Ba2Ni2-xCuxFe12O22 system, Electron, 11
Shen, 2015, Nonvolatile electric-field control of magnetization in a Y-type hexaferrite, Sci. Rep., 5, 1
Kocsis, 2019, Magnetization-polarization cross-control near room temperature in hexaferrite single crystals, Nat. Commun., 10, 3, 10.1038/s41467-019-09205-x
Nadeem, 2022, Enhanced Structural, Dielectric, and Magnetic Properties of Mn-Yb-doped Y-type Hexaferrites, 1
Mohammed, 2023, Effect of Dy 3 + -Cu 2 + doping on structural, magnetic and electromagnetic properties of Co 2 Y-type hexaferrite, Ceram. Int., 1
Bercoff, 2009, The influence of Nd-Co substitution on the magnetic properties of non-stoichiometric strontium hexaferrite nanoparticles, J. Magn. Magn. Mater., 321, 2245, 10.1016/j.jmmm.2009.01.033
Zhai, 2017, Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites, Nat. Commun., 8, 1, 10.1038/s41467-017-00637-x
Pullar, 2012, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci., 57, 1191, 10.1016/j.pmatsci.2012.04.001
Ali, 2013, Synthesis and characterization of hexagonal ferrite Co2Sr 2Fe12O22 with doped polypyrrole composites, Curr. Appl. Phys., 13, 1090, 10.1016/j.cap.2013.02.014
Vinaykumar, 2017, Electromagnetic properties of La-Co substituted Zn2Y type hexagonal ferrite for microwave device applications, Prog. Electromagn. Res. Symp., 157
Zhao, 2018, Recent advances on the electromagnetic wave absorption properties of Ni based materials, Eng. Sci., 10.30919/es8d735
Stergiou, 2015, Author ’ s accepted manuscript and antenna applications reference :, J. Magn. Magn. Mater.
He, 2020, Research on magnetic and microwave absorbing properties of Co2Y ferrite fabricated by sol–gel process, J. Sol Gel Sci. Technol., 96, 521, 10.1007/s10971-020-05235-w
Tchouank Tekou Carol, 2020, X-band shielding of electromagnetic interference (EMI) by Co2Y barium hexaferrite, bismuth copper titanate (BCTO), and polyaniline (PANI) composite, J. Magn. Magn. Mater., 501, 10.1016/j.jmmm.2020.166433
Kolev, 2022, Magnetic field influence on the microwave characteristics of composite samples based on polycrystalline Y-type hexaferrite, Polymers, 14, 1, 10.3390/polym14194114
Mohammed, 2022, Structural, morphological, optical, magnetic, and microwave properties of La 3 + - Mn 2 + substituted Zn 2 -Y-type barium-strontium hexaferrite, Chinese J. Phys., 78, 377, 10.1016/j.cjph.2022.06.025