Tổng Quan về Hạt Nano và Vật Liệu Nano Cấu Trúc: Ứng Dụng Trong Sinh Hình Ảnh, Cảm Biến Sinh Học, Phân Phối Thuốc, Kỹ Thuật Mô, Chống Khuẩn và Thực Phẩm Nông Nghiệp

Nanomaterials - Tập 12 Số 3 - Trang 457
Vancha Harish1, Devesh Tewari1, Manish Gaur2, Awadh Bihari Yadav2, Shiv Swaroop3, Mikhaël Bechelany4, Ahmed Barhoum5,6
1LPU - Lovely Professional University (Discipline of Electronics and Electrical Engineering, Lovely Professional University, Phagwara 144 402, PB, India. - Inde)
2University of Allahabad (University Road, Old Katra, Allahabad, Uttar Pradesh 211002 - Inde)
3Central University of Rajasthan (Inde)
4IEM - Institut Européen des membranes (1919, route de Mende - BP 5051 - 34293 Montpellier cedex 5 - France)
5DCU - Dublin City University [Dublin] (Glanevin, Dublin 9 - Irlande)
6Helwan University [Caire] (Al Sikka Al Hadid Al Gharbeya, Qism Helwan, Cairo Governorate - Égypte)

Tóm tắt

Trong vài thập kỷ qua, tiềm năng to lớn của vật liệu nano trong ứng dụng y sinh và chăm sóc sức khỏe đã được nghiên cứu một cách sâu rộng. Một số nghiên cứu trường hợp cho thấy vật liệu nano có thể cung cấp giải pháp cho những thách thức hiện tại về nguyên liệu thô trong lĩnh vực y sinh và chăm sóc sức khỏe. Bài tổng quan này mô tả các loại hạt nano khác nhau và các phương pháp tổng hợp vật liệu nano cấu trúc, đồng thời trình bày một số ứng dụng mới nổi trong y sinh, chăm sóc sức khỏe và thực phẩm nông nghiệp. Bài viết tập trung vào các loại vật liệu nano khác nhau (ví dụ: hình cầu, hạt nano hình que, ống nano, tấm nano, sợi nano, lõi-vỏ và xốp trung bình) có thể được tổng hợp từ các nguyên liệu thô khác nhau và những ứng dụng mới nổi của chúng trong hình ảnh sinh học, cảm biến sinh học, phân phối thuốc, kỹ thuật mô, kháng khuẩn và thực phẩm nông nghiệp. Tùy thuộc vào hình thái của chúng (ví dụ: kích thước, tỷ lệ khía cạnh, hình học, độ xốp), vật liệu nano có thể được sử dụng làm chất điều chỉnh công thức, chất giữ ẩm, chất độn nano, phụ gia, màng và phim. Do đánh giá độc tính phụ thuộc vào kích thước và hình thái, cần có quy định nghiêm ngặt trong việc kiểm tra liều lượng vật liệu nano hiệu quả. Những thách thức và triển vọng cho sự đột phá công nghiệp của vật liệu nano liên quan đến việc tối ưu hóa điều kiện sản xuất và chế biến.

Từ khóa


Tài liệu tham khảo

Gaur, M., Misra, C., Yadav, A.B., Swaroop, S., Maolmhuaidh, F., Bechelany, M., and Barhoum, A. (2021). Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials, 14.

Barhoum, 2019, Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications, Appl. Mater. Today, 17, 1, 10.1016/j.apmt.2019.06.015

Jeevanandam, 2018, Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations, Beilstein J. Nanotechnol., 9, 1050, 10.3762/bjnano.9.98

Barhoum, 2021, Simultaneous hydrogen and oxygen evolution reactions using free-standing nitrogen-doped-carbon–Co/CoOx nanofiber electrodes decorated with palladium nanoparticles, J. Mater. Chem. A, 9, 17724, 10.1039/D1TA03704H

Prasad, S., Kumar, V., Kirubanandam, S., and Barhoum, A. (2018). Engineered nanomaterials: Nanofabrication and surface functionalization. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends, Elsevier Inc.

Cremers, 2018, Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition, Surf. Coat. Technol., 349, 1032, 10.1016/j.surfcoat.2018.06.048

Hammani, S., Moulai-Mostefa, N., Samyn, P., Bechelany, M., Dufresne, A., and Barhoum, A. (2020). Morphology, Rheology and Crystallization in Relation to the Viscosity Ratio of Polystyrene/Polypropylene Polymer Blends. Materials, 13.

Barhoum, 2015, Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials, J. Mater. Sci., 50, 7908, 10.1007/s10853-015-9327-z

Rehan, 2019, Colored, photocatalytic, antimicrobial and UV-protected viscose fibers decorated with Ag/Ag2CO3 and Ag/Ag3PO4 nanoparticles, Cellulose, 26, 5437, 10.1007/s10570-019-02497-8

Salah, 2019, Carbon-based Nanosensors for Salicylate Determination in Pharmaceutical Preparations, Electroanalysis, 31, 778, 10.1002/elan.201800728

Abdel-Haleem, F., Mahmoud, S., Abdel-Ghani, N., El Nashar, R., Bechelany, M., and Barhoum, A. (2021). Polyvinyl Chloride Modified Carbon Paste Electrodes for Sensitive Determination of Levofloxacin Drug in Serum, Urine, and Pharmaceutical Formulations. Sensors, 21.

Gamal, 2021, Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples, Front. Bioeng. Biotechnol., 9, 648704, 10.3389/fbioe.2021.648704

(2016). Parikha Mehrotra, Biosensors and their applications—A review. J. Oral Biol. Craniofac. Res., 6, 153–159.

Rasouli, 2018, A review of nanostructured surfaces and materials for dental implants: Surface coating, patterning and functionalization for improved performance, Biomater. Sci., 6, 1312, 10.1039/C8BM00021B

Rasouli, 2018, Nanofibers for Biomedical and Healthcare Applications, Macromol. Biosci., 19, e1800256, 10.1002/mabi.201800256

Singh, 2021, Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences, RSC Adv., 11, 24722, 10.1039/D1RA04273D

Tan, K.X., Barhoum, A., Pan, S., and Danquah, M.K. (2018). Risks and toxicity of nanoparticles and nanostructured materials. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends, Elsevier Inc.

Kim, 2018, Recent Development of Inorganic Nanoparticles for Biomedical Imaging, ACS Central Sci., 4, 324, 10.1021/acscentsci.7b00574

Mihai, M.M., Dima, M.B., Dima, B., and Holban, A.M. (2019). Nanomaterials for Wound Healing and Infection Control. Materials, 12.

Said, M.M., Rehan, M., El-Sheikh, S.M., Zahran, M.K., Abdel-Aziz, M.S., Bechelany, M., and Barhoum, A. (2021). Multifunctional Hydroxyapatite/Silver Nanoparticles/Cotton Gauze for Antimicrobial and Biomedical Applications. Nanomaterials, 11.

Kumar, S., Bhushan, P., and Bhattacharya, S. (2017). Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others. Environmental, Chemical and Medical Sensors, Springer.

Sawy, 2021, Insights of doxorubicin loaded graphene quantum dots: Synthesis, DFT drug interactions, and cytotoxicity, Mater. Sci. Eng. C, 122, 111921, 10.1016/j.msec.2021.111921

Barhoum, 2017, Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism, Mater. Des., 119, 270, 10.1016/j.matdes.2017.01.059

Barhoum, 2016, Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: Porous microparticles versus nonporous nanoparticles, J. Mater. Sci., 52, 2746, 10.1007/s10853-016-0567-3

Hong, 2017, Near-infrared fluorophores for biomedical imaging, Nat. Biomed. Eng., 1, 10, 10.1038/s41551-016-0010

Grumezescu, T. (2019). Graphene nanomaterials: Chemistry and pharmaceutical perspectives. Nanomaterials for Drug Delivery and Therapy, Elsevier Inc.

Yang, 2019, Optically Active Nanomaterials for Bioimaging and Targeted Therapy, Front. Bioeng. Biotechnol., 7, 320, 10.3389/fbioe.2019.00320

Su, S., and Kang, P.M. (2020). Systemic Review of Biodegradable Nanomaterials in Nanomedicine. Nanomaterials, 10.

Siafaka, 2021, Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities, Asian J. Pharm. Health Sci., 16, 24

Yoon, 2017, Inorganic Nanoparticles for Image-Guided Therapy, Bioconjug. Chem., 28, 124, 10.1021/acs.bioconjchem.6b00512

Snipstad, 2016, Labeling nanoparticles: Dye leakage and altered cellular uptake, Cytom. Part A, 91, 760, 10.1002/cyto.a.22853

Shandilya, 2022, Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts, J. Hazard. Mater., 428, 128218, 10.1016/j.jhazmat.2022.128218

Rees, 2019, The origin of heterogeneous nanoparticle uptake by cells, Nat. Commun., 10, 2341, 10.1038/s41467-019-10112-4

Sukhanova, 2018, Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties, Nanoscale Res. Lett., 13, 44, 10.1186/s11671-018-2457-x

Forest, 2017, Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona, Mater. Sci. Eng. C, 70, 889, 10.1016/j.msec.2016.09.016

Foroozandeh, 2018, Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles, Nanoscale Res. Lett., 13, 339, 10.1186/s11671-018-2728-6

Friedman, 2013, The Smart Targeting of Nanoparticles, Curr. Pharm. Des., 19, 6315, 10.2174/13816128113199990375

Yoo, J., Park, C., Yi, G., Lee, D., and Koo, H. (2019). Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems. Cancers, 11.

Spicer, 2018, Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications, Chem. Soc. Rev., 47, 3574, 10.1039/C7CS00877E

Kher, G., Trehan, S., and Misra, A. (2011). Antisense Oligonucleotides and RNA Interference. Challenges in Delivery of Therapeutic Genomics and Proteomics, Elsevier.

Cremers, 2019, Efficient Small-Scale Conjugation of DNA to Primary Antibodies for Multiplexed Cellular Targeting, Bioconjug. Chem., 30, 2384, 10.1021/acs.bioconjchem.9b00490

Gao, 2020, Near-Infrared Light-Induced Self-Powered Aptasensing Platform for Aflatoxin B1 Based on Upconversion Nanoparticles-Doped Bi2S3 Nanorods, Anal. Chem., 93, 677, 10.1021/acs.analchem.0c04248

Yu, 2020, Recent Advances in Rare-Earth-Doped Nanoparticles for NIR-II Imaging and Cancer Theranostics, Front. Chem., 8, 496, 10.3389/fchem.2020.00496

Chinnathambi, 2019, Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging, Sci. Technol. Adv. Mater., 20, 337, 10.1080/14686996.2019.1590731

Arvizo, 2010, Gold nanoparticles: Opportunities and challenges in nanomedicine, Expert Opin. Drug Deliv., 7, 753, 10.1517/17425241003777010

Dong, 2021, Lanthanide-Doped Upconversion Nanoparticles for Super-Resolution Microscopy, Front. Chem., 8, 619377, 10.3389/fchem.2020.619377

Barhoum, 2019, Preparation of superhydrophobic nanocalcite crystals using Box–Behnken design, Arab. J. Chem., 12, 1479, 10.1016/j.arabjc.2014.11.003

Rehan, 2018, Development of Ag/AgX (X = Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers, Carbohydr. Polym., 197, 227, 10.1016/j.carbpol.2018.06.010

Wahajuddin, 2012, Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers, Int. J. Nanomed., 7, 3445, 10.2147/IJN.S30320

Lim, 2015, Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy, Nanoscale, 8, 12510, 10.1039/C5NR07853A

Liang, 2014, Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics, Chem. Commun., 50, 14071, 10.1039/C4CC03118K

Bhunia, 2013, Carbon Nanoparticle-based Fluorescent Bioimaging Probes, Sci. Rep., 3, srep01473, 10.1038/srep01473

Karatutlu, A., Barhoum, A., and Sapelkin, A. (2018). Theories of nanoparticle and nanostructure formation in liquid phase. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends, Elsevier Inc.

Barhoum, A., and García-Betancourt, M.L. (2018). Physicochemical characterization of nanomaterials: Size, morphology, optical, magnetic, and electrical properties. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends, Elsevier Inc.

Karatutlu, A., Barhoum, A., and Sapelkin, A. (2018). Liquid-phase synthesis of nanoparticles and nanostructured materials. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends, Elsevier Inc.

Tian, 2018, Graphene quantum dots from chemistry to applications, Mater. Today Chem., 10, 221, 10.1016/j.mtchem.2018.09.007

Singh, 2018, Carbon Quantum Dots: Synthesis, Characterization and Biomedical Applications, Turk. J. Pharm. Sci., 15, 219, 10.4274/tjps.63497

Jhonsi, M.A. (2018). Carbon Quantum Dots for Bioimaging. State of the Art in Nano-Bioimaging, IntechOpen.

Ravichandiran, 2019, Simple Fluorescence Turn-On Chemosensor for Selective Detection of Ba2+ Ion and Its Live Cell Imaging, Anal. Chem., 91, 10095, 10.1021/acs.analchem.9b02057

Hubbs, 2013, Nanotechnology: Toxicologic Pathology, Toxicol. Pathol., 41, 395, 10.1177/0192623312467403

Maldiney, 2011, Effect of Core Diameter, Surface Coating, and PEG Chain Length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice, ACS Nano, 5, 854, 10.1021/nn101937h

Heeger, 2001, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture), Angew. Chemie Int. Ed., 40, 2591, 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0

Thomas, 2007, Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers, Chem. Rev., 107, 1339, 10.1021/cr0501339

Feng, 2010, Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors, Chem. Soc. Rev., 39, 2411, 10.1039/b909065g

Khanbeigi, 2015, Surface Chemistry of Photoluminescent F8BT Conjugated Polymer Nanoparticles Determines Protein Corona Formation and Internalization by Phagocytic Cells, Biomacromolecules, 16, 733, 10.1021/bm501649y

Tuncel, 2010, Conjugated polymer nanoparticles, Nanoscale, 2, 484, 10.1039/b9nr00374f

Du, 2017, Rapid and multimodal in vivo bioimaging of cancer cells through in situ biosynthesis of Zn&Fe nanoclusters, Nano Res., 10, 2626, 10.1007/s12274-017-1465-y

Feng, 2014, Preparation and Biofunctionalization of Multicolor Conjugated Polymer Nanoparticles for Imaging and Detection of Tumor Cells, Adv. Mater., 26, 3926, 10.1002/adma.201305206

Ravichandiran, 2021, Mitochondria-targeted acridine-based dual-channel fluorescence chemosensor for detection of Sn4+ and Cr2O72-ions in water and its application in discriminative detection of cancer cells, J. Hazard. Mater., 419, 126409, 10.1016/j.jhazmat.2021.126409

Rhim, 2015, Radionuclide-labeled nanostructures for In Vivo imaging of cancer, Nano Converg., 2, 10, 10.1186/s40580-014-0041-3

Xu, 2021, Cadmium induced aggregation of orange–red emissive carbon dots with enhanced fluorescence for intracellular imaging, J. Hazard. Mater., 427, 128092, 10.1016/j.jhazmat.2021.128092

Zhao, 2021, Construction of nanomaterials as contrast agents or probes for glioma imaging, J. Nanobiotechnol., 19, 1, 10.1186/s12951-021-00866-9

Pratiwi, 2019, Recent advances in the use of fluorescent nanoparticles for bioimaging, Nanomedicine, 14, 1759, 10.2217/nnm-2019-0105

Chen, 2016, Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging, Mater. Horizons, 3, 283, 10.1039/C6MH00060F

Caponetti, 2019, Self-Assembled Biocompatible Fluorescent Nanoparticles for Bioimaging, Front. Chem., 7, 168, 10.3389/fchem.2019.00168

Lin, 2016, Graphene-based nanomaterials for bioimaging, Adv. Drug Deliv. Rev., 105, 242, 10.1016/j.addr.2016.05.013

Yadav, 2018, 2D MoS2-Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications, Small, 15, e1803706, 10.1002/smll.201803706

Zhao, 2018, Recent Advances in Functional-Polymer-Decorated Transition-Metal Nanomaterials for Bioimaging and Cancer Therapy, ChemMedChem, 13, 2134, 10.1002/cmdc.201800462

Yi, 2020, Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation, Accounts Chem. Res., 53, 2692, 10.1021/acs.accounts.0c00513

Xu, 2020, Group IV nanodots: Synthesis, surface engineering and application in bioimaging and biotherapy, J. Mater. Chem. B, 8, 10290, 10.1039/D0TB01881C

Esmaeili, 2020, Graphene oxide and its derivatives as promising in-vitro bio-imaging platforms, Sci. Rep., 10, 18052, 10.1038/s41598-020-75090-w

Das, 2020, Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications, Soft Matter, 16, 10065, 10.1039/D0SM01136C

Tan, 2021, Silver nanoparticle in biosensor and bioimaging: Clinical perspectives, Biotechnol. Appl. Biochem., 68, 1236

Bao, 2012, Gold Nanoprisms as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Gastrointestinal Cancers, Small, 9, 68, 10.1002/smll.201201779

Chen, 2014, Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy, Theranostics, 4, 798, 10.7150/thno.8934

Yadav, 2020, Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging, Mol. Imaging, 19, 1, 10.1177/1536012120969477

Klymchenko, 2020, Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine, Adv. Health Mater., 10, e2001289, 10.1002/adhm.202001289

Xu, 2019, Cadmium telluride quantum dot-exposed human bronchial epithelial cells: A further study of the cellular response by proteomics, Toxicol. Res., 8, 994, 10.1039/c9tx00126c

Patra, 2018, Nano based drug delivery systems: Recent developments and future prospects, J. Nanobiotechnol., 16, 71, 10.1186/s12951-018-0392-8

Yao, 2020, Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance, Front. Mol. Biosci., 7, 193, 10.3389/fmolb.2020.00193

Kim, 2020, Engineering peptide-targeted liposomal nanoparticles optimized for improved selectivity for HER2-positive breast cancer cells to achieve enhanced in vivo efficacy, J. Control. Release, 322, 530, 10.1016/j.jconrel.2020.04.010

Deng, 2020, Application of the Nano-Drug Delivery System in Treatment of Cardiovascular Diseases, Front. Bioeng. Biotechnol., 7, 489, 10.3389/fbioe.2019.00489

Deng, S., Gigliobianco, M.R., Censi, R., and Di Martino, P. (2020). Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. Nanomaterials, 10.

Pillay, 2007, Patenting of Nanopharmaceuticals in Drug Delivery: No Small Issue, Recent Patents Drug Deliv. Formul., 1, 131, 10.2174/187221107780831941

Narducci, 2007, An Introduction to Nanotechnologies: What’s in it for Us?, Veter-Res. Commun., 31, 131, 10.1007/s11259-007-0082-8

Navya, 2019, Current trends and challenges in cancer management and therapy using designer nanomaterials, Nano Converg., 6, 1, 10.1186/s40580-019-0193-2

Wen, 2015, Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges, AAPS J., 17, 1327, 10.1208/s12248-015-9814-9

Debnath, 2021, Drug Delivery with Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects, Front. Nanotechnol., 3, 15, 10.3389/fnano.2021.644564

Marcelo, 2015, Interaction of gold nanoparticles with Doxorubicin mediated by supramolecular chemistry, Colloids Surf. B Biointerfaces, 128, 237, 10.1016/j.colsurfb.2015.01.041

Zhang, 2016, Transporter protein and drug-conjugated gold nanoparticles capable of bypassing the blood-brain barrier, Sci. Rep., 6, 25794, 10.1038/srep25794

Muhammad, 2016, PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility, Eur. J. Pharm. Sci., 91, 251, 10.1016/j.ejps.2016.04.029

Prabha, 2017, Sodium alginate–polyvinyl alcohol–bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: Doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells, Mater. Sci. Eng. C, 79, 410, 10.1016/j.msec.2017.04.075

Prabha, 2016, Formation and characterization of β-cyclodextrin (β-CD)-polyethyleneglycol (PEG)-polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug, Biomed. Pharmacother., 80, 173, 10.1016/j.biopha.2016.03.015

Luo, 2011, Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone, Biomaterials, 32, 6316, 10.1016/j.biomaterials.2011.05.020

Bhirde, 2010, Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice, Nanomedicine, 5, 1535, 10.2217/nnm.10.90

Ruzycka, 2021, Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells, Cancer Nanotechnol., 12, 8, 10.1186/s12645-021-00077-9

Roozbahani, 2017, pH sensitive dexamethasone encapsulated laponite nanoplatelets: Release mechanism and cytotoxicity, Int. J. Pharm., 518, 312, 10.1016/j.ijpharm.2017.01.001

Gurdag, 2006, Activity of Dendrimer−Methotrexate Conjugates on Methotrexate-Sensitive and -Resistant Cell Lines, Bioconjug. Chem., 17, 275, 10.1021/bc0501855

Buchegger, 2010, Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice, J. Control. Release, 144, 324, 10.1016/j.jconrel.2010.02.026

Wilson, 2010, Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine, Nanomed. NanotechnoL. Biol. Med., 6, 144, 10.1016/j.nano.2009.04.001

Anderson, 2010, Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis, Arthritis Res. Ther., 12, R147, 10.1186/ar3089

Zalba, 2015, Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer, J. Control. Release, 210, 26, 10.1016/j.jconrel.2015.05.271

Zhang, 2017, Pt(iv) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment, J. Mater. Chem. B, 5, 2115, 10.1039/C7TB00178A

Liu, 2012, Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers, J. Mater. Chem. B, 1, 101, 10.1039/C2TB00121G

Adeel, 2020, Self-Therapeutic Nanomaterials for Cancer Therapy: A Review, ACS Appl. Nano Mater., 3, 4962, 10.1021/acsanm.0c00762

Sutradhar, 2014, Nanotechnology in Cancer Drug Delivery and Selective Targeting, ISRN Nanotechnol., 2014, 1, 10.1155/2014/939378

Senapati, 2018, Controlled drug delivery vehicles for cancer treatment and their performance, Signal Transduct. Target. Ther., 3, 7, 10.1038/s41392-017-0004-3

Farokhzad, 2009, Impact of Nanotechnology on Drug Delivery, ACS Nano, 3, 16, 10.1021/nn900002m

Gong, 2011, Strategies in biomimetic surface engineering of nanoparticles for biomedical applications, Nanoscale, 4, 360, 10.1039/C1NR11297J

Khan, 2019, Nanoparticles: Properties, applications and toxicities, Arab. J. Chem., 12, 908, 10.1016/j.arabjc.2017.05.011

Zhu, 2015, Applications of Nanoparticles for Anticancer Drug Delivery: A Review, J. Nanosci. Nanotechnol., 15, 4753, 10.1166/jnn.2015.10298

Wen, 2019, Nanoparticle systems for cancer vaccine, Nanomedicine, 14, 627, 10.2217/nnm-2018-0147

James, 2014, Smart polymers for the controlled delivery of drugs—A concise overview, Acta Pharm. Sin. B, 4, 120, 10.1016/j.apsb.2014.02.005

Fleige, 2012, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications, Adv. Drug Deliv. Rev., 64, 866, 10.1016/j.addr.2012.01.020

Cohen, 1972, Diffusion of Small Non-Electrolytes across Liposome Membranes, Nature, 236, 173, 10.1038/236173a0

Thanou, M. (2013). Nanoparticles for Drug and Gene Delivery. Encyclopedia of Biophysics, Springer.

Vahed, 2018, Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles, J. Drug Target., 27, 292, 10.1080/1061186X.2018.1491978

Gugulothu, D., Barhoum, A., Afzal, S.M., Venkateshwarlu, B., and Uludag, H. (2018). Structural Multifunctional Nanofibers and their Emerging Applications. Handbook of Nanofibers, Springer Nature Switzerland AG.

Bubakir, M.M., Li, H., Barhoum, A., and Yang, W. (2019). Advances in Melt Electrospinning Technique. Handbook of Nanofibers, Springer International Publishing.

Sasikala, 2016, An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release, Acta Biomater., 31, 122, 10.1016/j.actbio.2015.12.015

Kim, 2013, A Smart Hyperthermia Nanofiber with Switchable Drug Release for Inducing Cancer Apoptosis, Adv. Funct. Mater., 23, 5753, 10.1002/adfm.201300746

Ankegowda, V.M., Kollur, S.P., Prasad, S.K., Pradeep, S., Dhramashekara, C., Jain, A.S., Prasad, A., Srinivasa, C., Sridhara Setty, P., and Gopinath, S.M. (2020). Phyto-Mediated Synthesis of Silver Nanoparticles Using Terminalia chebula Fruit Extract and Evaluation of Its Cytotoxic and Antimicrobial Potential. Molecules, 25.

Gagliardi, A., Cosco, D., Udongo, B.P., Dini, L., Viglietto, G., and Paolino, D. (2020). Design and Characterization of Glyceryl Monooleate-Nanostructures Containing Doxorubicin Hydrochloride. Pharmaceutics, 12.

Faisalina, A., Sonvico, F., Colombo, P., Amirul, A., Wahab, H., and Majid, M. (2020). Docetaxel-Loaded Poly(3HB-co-4HB) Biodegradable Nanoparticles: Impact of Copolymer Composition. Nanomaterials, 10.

Nicosia, A., Cavallaro, G., Costa, S., Utzeri, M.A., Cuttitta, A., Giammona, G., and Mauro, N. (2020). Carbon Nanodots for On Demand Chemophotothermal Therapy Combination to Elicit Necroptosis: Overcoming Apoptosis Resistance in Breast Cancer Cell Lines. Cancers, 12.

Sui, 2020, Reversing P-Glycoprotein-Associated Multidrug Resistance of Breast Cancer by Targeted Acid-Cleavable Polysaccharide Nanoparticles with Lapatinib Sensitization, ACS Appl. Mater. Interfaces, 12, 51198, 10.1021/acsami.0c13986

Tieu, 2020, Nanobody-displaying porous silicon nanoparticles for the co-delivery of siRNA and doxorubicin, Biomater. Sci., 9, 133, 10.1039/D0BM01335H

Dorjsuren, 2020, Cetuximab-Coated Thermo-Sensitive Liposomes Loaded with Magnetic Nanoparticles and Doxorubicin for Targeted EGFR-Expressing Breast Cancer Combined Therapy, Int. J. Nanomed., 15, 8201, 10.2147/IJN.S261671

Chu, 2015, Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy, Int. J. Nanomed., 10, 3663, 10.2147/IJN.S80134

Fernandes, 2014, Nanotechnology and antioxidant therapy: An emerging approach for neurodegenerative diseases, Curr. Med. Chem., 21, 4311, 10.2174/0929867321666140915141836

Martinelli, 2019, Antioxidants and Nanotechnology: Promises and Limits of Potentially Disruptive Approaches in the Treatment of Central Nervous System Diseases, Adv. Health Mater., 9, e1901589, 10.1002/adhm.201901589

Swain, 2016, Nanoparticles for Cancer Targeting: Current and Future Directions, Curr. Drug Deliv., 13, 1290, 10.2174/1567201813666160713121122

Vaiserman, 2020, Nanodelivery of Natural Antioxidants: An Anti-aging Perspective, Front. Bioeng. Biotechnol., 7, 447, 10.3389/fbioe.2019.00447

Shah, S.T., Yehya, W.A., Saad, O., Simarani, K., Chowdhury, Z., Alhadi, A.A., and Al-Ani, L.A. (2017). Surface Functionalization of Iron Oxide Nanoparticles with Gallic Acid as Potential Antioxidant and Antimicrobial Agents. Nanomaterials, 7.

Verma, 2014, Anti-oxidant activities of biopolymeric nanoparticles: Boon or bane, J. Pharm. Res., 8, 871

Sharpe, E., Andreescu, D., and Andreescu, S. (2011). Artificial Nanoparticle Antioxidants. Oxidative Stress: Diagnostics, Prevention, and Therapy, ACS Publications.

Yusof, 2015, Antioxidants effects of Platinum Nanoparticles: A Potential Alternative Treatment to Lung Diseases, J. Appl. Pharm. Sci., 5, 140, 10.7324/JAPS.2015.50722

Watanabe, 2009, In vitro free radical scavenging activity of platinum nanoparticles, Nanotechnology, 20, 455105, 10.1088/0957-4484/20/45/455105

Patlolla, 2015, Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague–Dawley rats, Food Chem. Toxicol., 85, 52, 10.1016/j.fct.2015.05.005

Saikia, 2010, Nickel oxide nanoparticles: A novel antioxidant, Colloids Surf. B Biointerfaces, 78, 146, 10.1016/j.colsurfb.2010.02.016

Keshari, 2018, Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum, J. Ayurveda Integr. Med., 11, 37, 10.1016/j.jaim.2017.11.003

Kumar, H., Bhardwaj, K., Nepovimova, E., Kuca, K., Dhanjal, D.S., Bhardwaj, S., Bhatia, S.K., Verma, R., and Kumar, D. (2020). Antioxidant Functionalized Nanoparticles: A Combat against Oxidative Stress. Nanomaterials, 10.

Khan, 2013, Gold nanoparticles: A paradigm shift in biomedical applications, Adv. Colloid Interface Sci., 199–200, 44, 10.1016/j.cis.2013.06.003

Khalil, I., Yehye, W.A., Etxeberria, A.E., Alhadi, A.A., Dezfooli, S.M., Julkapli, N.B.M., Basirun, W.J., and Seyfoddin, A. (2019). Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications. Antioxidants, 9.

Arriagada, F., Günther, G., and Morales, J. (2020). Nanoantioxidant–Based Silica Particles as Flavonoid Carrier for Drug Delivery Applications. Pharmaceutics, 12.

Yi, 2010, Pluronic-modified superoxide dismutase 1 attenuates angiotensin II-induced increase in intracellular superoxide in neurons, Free. Radic. Biol. Med., 49, 548, 10.1016/j.freeradbiomed.2010.04.039

Tong, 2012, Conjugates of Superoxide Dismutase 1 with Amphiphilic Poly(2-oxazoline) Block Copolymers for Enhanced Brain Delivery: Synthesis, Characterization and Evaluation in Vitro and in Vivo, Mol. Pharm., 10, 360, 10.1021/mp300496x

Scherpereel, 2003, PECAM-directed delivery of catalase to endothelium protects against pulmonary vascular oxidative stress, Am. J. Physiol. Cell. Mol. Physiol., 285, L283, 10.1152/ajplung.00021.2003

Brynskikh, 2010, Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease, Nanomedicine, 5, 379, 10.2217/nnm.10.7

Williams, 2008, Synthesis and Characterization of Poly(ethylene glycol)−Glutathione Conjugate Self-Assembled Nanoparticles for Antioxidant Delivery, Biomacromolecules, 10, 155, 10.1021/bm801058j

Gonnet, 2010, New trends in encapsulation of liposoluble vitamins, J. Control Release, 146, 276, 10.1016/j.jconrel.2010.01.037

Wegmann, 2002, Characterization of Lycopene Nanoparticles Combining Solid-State and Suspended-State NMR Spectroscopy, J. Agric. Food Chem., 50, 7510, 10.1021/jf020715g

Mignet, 2012, Development of a liposomal formulation of the natural flavonoid fisetin, Int. J. Pharm., 423, 69, 10.1016/j.ijpharm.2011.04.066

Deligiannakis, 2012, Antioxidant and Antiradical SiO2 Nanoparticles Covalently Functionalized with Gallic Acid, ACS Appl. Mater. Interfaces, 4, 6609, 10.1021/am301751s

Liu, 2016, Preparation of nanosilica-immobilized antioxidant and the antioxidative behavior in low density polyethylene, Polym. Degrad. Stab., 135, 1, 10.1016/j.polymdegradstab.2016.10.013

Du, 2013, Mechanism and Cellular Kinetic Studies of the Enhancement of An-tioxidant Activity by Using Surface-Functionalized Gold Nanoparticles, Chem. Eur. J., 19, 1281, 10.1002/chem.201203506

Sahiner, 2016, Preparation and characterization of monodisperse, mesoporous natural poly (tannic acid)–silica nanoparticle composites with antioxidant properties, Microporous Mesoporous Mater., 226, 316, 10.1016/j.micromeso.2016.02.012

Arriagada, F., Correa, O., Gunther, G., Nonell, S., Mura, F., Olea-Azar, C., and Morales, J. (2016). Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial. PLoS ONE, 11.

Kang, 2017, Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage, Nano Res., 10, 2743, 10.1007/s12274-017-1478-6

Joseph, 2018, Curcumin-loaded polymeric nanoparticles for neuroprotection in neonatal rats with hypoxic-ischemic encephalopathy, Nano Res., 11, 5670, 10.1007/s12274-018-2104-y

Yalcinkaya, 2016, Preparation of Antibacterial Nanofibre/Nanoparticle Covered Composite Yarns, J. Nanomater., 2016, 7565972, 10.1155/2016/7565972

Salama, A., Abouzeid, R., Leong, W.S., Jeevanandam, J., Samyn, P., Dufresne, A., Bechelany, M., and Barhoum, A. (2021). Nanocellulose-Based Materials for Water Treatment: Adsorption, Photocatalytic Degradation, Disinfection, Antifouling, and Nanofiltration. Nanomaterials, 11.

Shahriary, 2018, In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity, Mater. Sci. Eng. C, 90, 57, 10.1016/j.msec.2018.04.044

Youssef, 2017, Evaluation of the Morphological, Electrical and Antibacterial Properties of Polyaniline Nanocomposite Based on Zn/Al-Layered Double Hydroxides, ChemistrySelect, 2, 8553, 10.1002/slct.201701513

Sudha, P.N., Sangeetha, K., Vijayalakshmi, K., and Barhoum, A. (2018). Nanomaterials History, Classification, Unique Properties, Production and Market. Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends, Elsevier Inc.

Nnaji, C.O., Jeevanandam, J., Chan, Y.S., Danquah, M.K., Pan, S., and Barhoum, A. (2018). Engineered nanomaterials for wastewater treatment: Current and future trends. Fundamentals of Nanoparticles, Elsevier Inc.

Jung, 2008, Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microbiol., 74, 2171, 10.1128/AEM.02001-07

Smetana, 2008, Biocidal Activity of Nanocrystalline Silver Powders and Particles, Langmuir, 24, 7457, 10.1021/la800091y

Panacek, 2006, Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity, J. Phys. Chem. B, 110, 16248, 10.1021/jp063826h

Nanda, 2009, Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed, Nanotechnol. Biol. Med., 5, 452, 10.1016/j.nano.2009.01.012

Matsunaga, 1988, Continuous-sterilization system that uses photosemiconductor powders, Appl. Environ. Microbiol., 54, 1330, 10.1128/aem.54.6.1330-1333.1988

Kim, 2003, Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria, Chemosphere, 52, 277, 10.1016/S0045-6535(03)00051-1

Sunada, 1998, Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts, Environ. Sci. Technol., 32, 726, 10.1021/es970860o

Ren, 2009, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, 33, 587, 10.1016/j.ijantimicag.2008.12.004

Cioffi, 2005, Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties, Chem. Mater., 17, 5255, 10.1021/cm0505244

Rajakumar, 2012, Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 91, 23, 10.1016/j.saa.2012.01.011

Quintana, 2013, Antifungal Coatings Based on Ca(OH)2 Mixed with ZnO/TiO2 Nanomaterials for Protection of Limestone Monuments, ACS Appl. Mater. Interfaces, 5, 1556, 10.1021/am302783h

Herman, 2014, Nanoparticles as Antimicrobial Agents: Their Toxicity and Mechanisms of Action, J. Nanosci. Nanotechnol., 14, 946, 10.1166/jnn.2014.9054

Mageshwari, 2013, Flower-shaped CuO Nanostructures: Synthesis, Characterization and Antimicrobial Activity, J. Mater. Sci. Technol., 29, 909, 10.1016/j.jmst.2013.04.020

Prucek, 2009, Antifungal activity of silver nanoparticles against Candida spp., Biomaterials, 30, 6333, 10.1016/j.biomaterials.2009.07.065

Sawai, 2004, Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay, J. Appl. Microbiol., 96, 803, 10.1111/j.1365-2672.2004.02234.x

Sawai, 2003, Measurement of fungi by an indirect conductimetric assay, Lett. Appl. Microbiol., 37, 40, 10.1046/j.1472-765X.2003.01344.x

Marradi, 2010, Gold nanoparticles capped with sulfate-ended ligands as anti-HIV agents, Bioorg. Med. Chem. Lett., 20, 2718, 10.1016/j.bmcl.2010.03.079

Lara, 2010, Mode of antiviral action of silver nanoparticles against HIV-1, J. Nanobiotechnol., 8, 1, 10.1186/1477-3155-8-1

Lu, 2008, Silver nanoparticles inhibit hepatitis B virus replication, Antivir. Ther., 13, 253, 10.1177/135965350801300210

Zheng, 2008, Radiosensitization by Gold Nanoparticles: Comparison of DNA Damage Induced by Low and High-Energy Electrons, J. Biomed. Nanotechnol., 4, 469, 10.1166/jbn.2008.3282

Syngouna, 2017, Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light, J. Colloid Interface Sci., 497, 117, 10.1016/j.jcis.2017.02.059

Cui, 2010, Photocatalytic Inactivation Efficiency of Anatase Nano-TiO2 Sol on the H9N2 Avian Influenza Virus, Photochem. Photobiol., 86, 1135, 10.1111/j.1751-1097.2010.00763.x

Baiocco, 2010, Inhibitory Effect of Silver Nanoparticles on Trypanothione Reductase Activity and Leishmania infantum Proliferation, ACS Med. Chem. Lett., 2, 230, 10.1021/ml1002629

Allahverdiyev, 2011, Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light, Int. J. Nanomed., 6, 2705, 10.2147/IJN.S23883

Nadhman, 2014, PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania, Free. Radic. Biol. Med., 77, 230, 10.1016/j.freeradbiomed.2014.09.005

Saad, 2015, Antiparasitic Activity of Silver and Copper Oxide Nanoparticles against Entamoeba histolytica and Cryptosporidium parvum Cysts, J. Egypt. Soc. Parasitol., 45, 593

Ramyadevi, 2011, Copper nanoparticles synthesized by polyol process used to control hematophagous parasites, Parasitol. Res., 109, 1403, 10.1007/s00436-011-2387-3

Barhoum, 2016, Seed-Mediated Hot-Injection Synthesis of Tiny Ag Nanocrystals on Nanoscale Solid Supports and Reaction Mechanism, ACS Appl. Mater. Interfaces, 8, 10551, 10.1021/acsami.5b10405

Rehan, 2017, Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics, Int. J. Biol. Macromol., 98, 877, 10.1016/j.ijbiomac.2017.02.058

Barhoum, A., Rahier, H., Benelmekki, M., and Van Assche, G. (2018). Recent trends in nanostructured particles: Synthesis, functionalization, and applications. Fundamentals of Nanoparticles, Elsevier Inc.

Rastogi, A., Singh, P., Haraz, F.A., and Barhoum, A. (2019, April 21). Chapter 19—Biological Synthesis of Nanoparticles: An Environmentally Benign Approach. Available online: https://www.sciencedirect.com/science/article/pii/B9780323512558000239.

Dakal, 2016, Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles, Front. Microbiol., 7, 1831, 10.3389/fmicb.2016.01831

Sim, 2018, Silver bullets: A new lustre on an old antimicrobial agent, Biotechnol. Adv., 36, 1391, 10.1016/j.biotechadv.2018.05.004

Gupta, N., Upadhyaya, C.P., Singh, A., Abd-Elsalam, K.A., and Prasad, R. (2018). Applications of Silver Nanoparticles in Plant Protection. Nanobiotechnology Applications in Plant Protection, Springer.

Shaheen, 2013, Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract, J. Saudi Chem. Soc., 18, 356

Belaiche, 2021, Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of artemisia herbaalba as reducing and capping agents, Rom. J. Mater., 51, 342

Fatima, S., Ali, K., Ahmed, B., Al Kheraif, A.A., Syed, A., Elgorban, A.M., Musarrat, J., and Lee, J. (2021). Titanium Dioxide Nanoparticles Induce Inhibitory Effects against Planktonic Cells and Biofilms of Human Oral Cavity Isolates of Rothia mucilaginosa, Georgenia sp. and Staphylococcus saprophyticus. Pharmaceutics, 13.

Husain, 2020, Phyto-Mediated Synthesis of Porous Titanium Dioxide Nanoparticles From Withania somnifera Root Extract: Broad-Spectrum Attenuation of Biofilm and Cytotoxic Properties Against HepG2 Cell Lines, Front. Microbiol., 11, 1680, 10.3389/fmicb.2020.01680

Ilyas, 2021, Biological synthesis of titanium dioxide nanoparticles from plants and microorganisms and their potential biomedical applications, Inorg. Chem. Commun., 133, 108968, 10.1016/j.inoche.2021.108968

Balaraman, R.P., Mendel, J., Flores, L., and Choudhary, M. (2021). Nanoparticle Biosynthesis and Interaction with the Microbial Cell, Antimicrobial and Antibiofilm Effects, and Environmental Impact. Nanomaterial Biointeractions at the Cellular, Organismal and System Levels, Springer.

Jardón-Maximino, N., Cadenas-Pliego, G., Ávila-Orta, C., Comparán-Padilla, V., Lugo-Uribe, L., Pérez-Alvarez, M., Tavizón, S., and Santillán, G. (2021). Antimicrobial Property of Polypropylene Composites and Functionalized Copper Nanoparticles. Polymers, 13.

Gharpure, 2020, A Review on Antimicrobial Properties of Metal Nanoparticles, J. Nanosci. Nanotechnol., 20, 3303, 10.1166/jnn.2020.17677

Barhoum, 2013, Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids Surf. A Physicochem, Eng. Asp., 422, 44, 10.1016/j.colsurfa.2013.01.020

Sharma, 2015, Polymeric nanoparticles drug delivery to brain: A review, Int. J. Pharmacol., 2, 60

Jun, 2003, Prospects for gene therapy in corneal disease, Eye, 17, 906, 10.1038/sj.eye.6700565

Dzau, 1996, Fusigenic viral liposome for gene therapy in cardiovascular diseases, Proc. Natl. Acad. Sci. USA, 93, 11421, 10.1073/pnas.93.21.11421

Caplen, 1994, Gene therapy for cystic fibrosis in humans by liposome-mediated DNA transfer: The production of resources and the regulatory process, Gene Ther., 1, 139

Balazs, 2010, Liposomes for Use in Gene Delivery, J. Drug Deliv., 2011, 326497

Ito, 2004, Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo, Cancer Gene Ther., 11, 733, 10.1038/sj.cgt.7700756

Singh, 2017, Organic Nanoparticle-Based Combinatory Approaches for Gene Therapy, Trends Biotechnol., 35, 1121, 10.1016/j.tibtech.2017.07.010

Chen, 2016, Production and clinical development of nanoparticles for gene delivery, Mol. Ther. Methods Clin. Dev., 3, 16023, 10.1038/mtm.2016.23

Nagamune, 2017, Biomolecular engineering for nanobio/bionanotechnology, Nano Converg., 4, 1, 10.1186/s40580-017-0103-4

Prabu, S.L., Suriyaprakash, T.N.K., and Thirumurugan, R. (2017). Medicated Nanoparticle for Gene Delivery. Advanced Technology for Delivering Therapeutics, IntechOpen. Available online: https://www.intechopen.com/chapters/52818.

Jat, 2020, Nanomaterial based gene delivery: A promising method for plant genome engineering, J. Mater. Chem. B, 8, 4165, 10.1039/D0TB00217H

Gamal, 2020, t-Butyl calixarene/Fe2O3@MWCNTs composite-based potentiometric sensor for determination of ivabradine hydrochloride in pharmaceutical formulations, Mater. Sci. Eng. C, 116, 111110, 10.1016/j.msec.2020.111110

Saad, 2018, PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids, Mater. Sci. Eng. C, 89, 140, 10.1016/j.msec.2018.04.001

Ghani, 2017, Molecularly imprinted polymers based biomimetic sensors for mosapride citrate detection in biological fluids, Mater. Sci. Eng. C, 76, 123, 10.1016/j.msec.2017.03.087

Barhoum, 2021, Molecularly Imprinted Potentiometric Sensor for Nanomolar Determination of Pioglitazone Hydrochloride in Pharmaceutical Formulations, Electroanalysis, 33, 1244, 10.1002/elan.202060141

Naresh, V., and Lee, N. (2021). A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors, 21.

Reda, 2020, Review—Nanostructured Materials-Based Nanosensors, J. Electrochem. Soc., 167, 037554, 10.1149/1945-7111/ab67aa

Tang, 2016, High-Throughput Electrochemical Microfluidic Immunoarray for Multiplexed Detection of Cancer Biomarker Proteins, ACS Sens., 1, 1036, 10.1021/acssensors.6b00256

Wang, 2020, Application of Zero-Dimensional Nanomaterials in Biosensing, Front. Chem., 8, 320, 10.3389/fchem.2020.00320

Cotta, 2020, Quantum Dots and Their Applications: What Lies Ahead?, ACS Appl. Nano Mater., 3, 4920, 10.1021/acsanm.0c01386

Abraham, J., Arunima, R., Nimitha, K., George, S.C., and Thomas, S. (2021). One-dimensional (1D) nanomaterials: Nanorods and nanowires. Nanoscale Processing, Elsevier.

Erol, 2017, Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomed, Nanotechnol. Biol. Med., 14, 2433, 10.1016/j.nano.2017.03.021

Dvir, 2011, Nanotechnological strategies for engineering complex tissues, Nat. Nanotechnol., 6, 13, 10.1038/nnano.2010.246

Shi, 2010, Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications, Nano Lett., 10, 3223, 10.1021/nl102184c

Zhang, K., Barhoum, A., Xiaoqing, C., Li, H., and Samyn, P. (2019). Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques. Handbook of Nanofibers, Springer International Publishing.

Gugulothu, D., Barhoum, A., Nerella, R., Ajmer, R., and Bechlany, M. (2018). Fabrication of Nanofibers: Electrospinning and Non-Electrospinning Techniques. Handbook of Nanofibers, Springer International Publishing.

Meftahi, 2021, Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications, Carbohydr. Polym., 278, 118956, 10.1016/j.carbpol.2021.118956

Rabie, 2022, Spontaneous Formation of 3D Breast Cancer Tissues on Electrospun Chitosan/Poly(ethylene oxide) Nanofibrous Scaffolds, ACS Omega, 7, 2114, 10.1021/acsomega.1c05646

Barhoum, A., García-Betancourt, M.L., Jeevanandam, J., Hussien, E.A., Mekkawy, S.A., Mostafa, M., Omran, M.M., Abdalla, M.S., and Bechelany, M. (2022). Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. Nanomaterials, 12.

Besinis, 2015, Review of Nanomaterials in Dentistry: Interactions with the Oral Microenvironment, Clinical Applications, Hazards, and Benefits, ACS Nano, 9, 2255, 10.1021/nn505015e

Xi, 2019, Dual Corona Vesicles with Intrinsic Antibacterial and Enhanced Antibiotic Delivery Capabilities for Effective Treatment of Biofilm-Induced Periodontitis, ACS Nano, 13, 13645, 10.1021/acsnano.9b03237

Lombardi, 2012, Editorial [Exploring Neural-Immune System Interactions], Curr. Immunol. Rev., 8, 37, 10.2174/157339512798991191

Bertram, 2005, The genetic epidemiology of neurodegenerative disease, J. Clin. Investig., 115, 1449, 10.1172/JCI24761

Faroni, 2015, Peripheral nerve regeneration: Experimental strategies and future perspectives, Adv. Drug Deliv. Rev., 82–83, 160, 10.1016/j.addr.2014.11.010

Barhoum, 2020, Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions, J. Colloid Interface Sci., 569, 286, 10.1016/j.jcis.2020.02.063

Barhoum, A., Rasouli, R., Yousefzadeh, M., Rahier, H., and Bechelany, M. (2019). Nanofiber Technologies: History and Development. Handbook of Nanofibers, Springer International Publishing.

Barhoum, A., Favre, T., Sayegh, S., Tanos, F., Coy, E., Iatsunskyi, I., Razzouk, A., Cretin, M., and Bechelany, M. (2021). 3D Self-Supported Nitrogen-Doped Carbon Nanofiber Electrodes Incorporated Co/CoOx Nanoparticles: Application to Dyes Degradation by Electro-Fenton-Based Process. Nanomaterials, 11.

Turky, 2017, Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique, J. Mater. Sci. Mater. Electron., 28, 17526, 10.1007/s10854-017-7688-6

Barhoum, 2020, Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials, Nanoscale, 12, 22845, 10.1039/D0NR04795C

Aljabali, A.A.A., Obeid, M.A., Al Zoubi, M.S., Charbe, N.B., Chellappan, D.K., Mishra, V., Dureja, H., Gupta, G., Prasher, P., and Dua, K. (2021). Nanocelluloses in Sensing Technology. Handbook of Nanocelluloses, Springer.

Xue, 2020, Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers, Adv. Sci., 7, 2000735, 10.1002/advs.202000735

Sorg, 2016, Skin Wound Healing: An Update on the Current Knowledge and Concepts, Eur. Surg. Res., 58, 81, 10.1159/000454919

Dreifke, 2014, Current wound healing procedures and potential care, Mater. Sci. Eng. C, 48, 651, 10.1016/j.msec.2014.12.068

Pober, 2014, Inflammation and the blood microvascular system, Cold Spring Harb. Perspect Biol., 7, a016345, 10.1101/cshperspect.a016345

Bodnar, 2015, Chemokine Regulation of Angiogenesis during Wound Healing, Adv. Wound Care, 4, 641, 10.1089/wound.2014.0594

Mechanick, 2004, Practical aspects of nutritional support for wound-healing patients, Am. J. Surg., 188, 52, 10.1016/S0002-9610(03)00291-5

Greer, 2013, Advanced Wound Care Therapies for Nonhealing Diabetic, Venous, and Arterial Ulcers, Ann. Intern. Med., 159, 532, 10.7326/0003-4819-159-8-201310150-00006

Ravichandiran, 2021, Construction of a simple dual-channel fluorescence chemosensor for Cu2+ ion and GSSG detection and its mitochondria-targeting bioimaging applications, Anal. Chim. Acta, 1181, 338896, 10.1016/j.aca.2021.338896

Randeria, 2015, siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown, Proc. Natl. Acad. Sci. USA, 112, 5573, 10.1073/pnas.1505951112

Wang, 2016, Nanotechnology: A New Opportunity in Plant Sciences, Trends Plant Sci., 21, 699, 10.1016/j.tplants.2016.04.005

Rastogi, 2019, Application of silicon nanoparticles in agriculture, 3 Biotech, 9, 90, 10.1007/s13205-019-1626-7

Jampílek, J., and Kráľová, K. (2017). Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. Nano-Technology, Springer.

Liu, 2015, Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions, Sci. Total Environ., 514, 131, 10.1016/j.scitotenv.2015.01.104

Saharan, 2016, Cu-Chitosan Nanoparticle Mediated Sustainable Approach To Enhance Seedling Growth in Maize by Mobilizing Reserved Food, J. Agric. Food Chem., 64, 6148, 10.1021/acs.jafc.6b02239

Verma, 2018, Engineered nanomaterials for plant growth and development: A perspective analysis, Sci. Total Environ., 630, 1413, 10.1016/j.scitotenv.2018.02.313

Khodakovskaya, 2012, Carbon Nanotubes as Plant Growth Regulators: Effects on Tomato Growth, Reproductive System, and Soil Microbial Community, Small, 9, 115, 10.1002/smll.201201225

Hasaneen, 2016, Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil, Span. J. Agric. Res., 14, e0902, 10.5424/sjar/2016141-8205

Meurer, 2017, Biofunctional Microgel-Based Fertilizers for Controlled Foliar Delivery of Nutrients to Plants, Angew. Chem. Int. Ed., 56, 7380, 10.1002/anie.201701620

Shang, Y., Hasan, M.K., Ahammed, G.J., Li, M., Yin, H., and Zhou, J. (2019). Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules, 24.

Qureshi, 2018, Nano-fertilizers: A Novel Way for Enhancing Nutrient Use Efficiency and Crop Productivity, Int. J. Curr. Microbiol. Appl. Sci., 7, 3325, 10.20546/ijcmas.2018.702.398

Preetha, 2017, A Review of Nano Fertilizers and Their Use and Functions in Soil, Int. J. Curr. Microbiol. Appl. Sci., 6, 3117, 10.20546/ijcmas.2017.612.364

Solanki, P., Bhargava, A., Chhipa, H., Jain, N., and Panwar, J. (2015). Nano-fertilizers and Their Smart Delivery System. Nanotechnologies in Food and Agriculture, Springer.

Subramanian, K.S., Manikandan, A., Thirunavukkarasu, M., and Rahale, C.S. (2015). Nano-fertilizers for Balanced Crop Nutrition. Nanotechnologies in Food and Agriculture, Springer.

Sanzari, 2019, Nanotechnology in Plant Science: To Make a Long Story Short, Front. Bioeng. Biotechnol., 7, 120, 10.3389/fbioe.2019.00120

Park, B. (2013). Nanotechnology and the packaging of food and other fast-moving consumer goods. Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG), Woodhead Publishing Limited.

Rossi, M., Passeri, D., Sinibaldi, A., Angjellari, M., Tamburri, E., Sorbo, A., Carata, E., and Dini, L. (2017). Nanotechnology for Food Packaging and Food Quality Assessment. Advances in Food and Nutrition Research, Elsevier.

Contado, 2015, Nanomaterials in consumer products: A challenging analytical problem, Front. Chem., 3, 48, 10.3389/fchem.2015.00048

Mu, 2014, Direct, Rapid, and Label-Free Detection of Enzyme–Substrate Interactions in Physiological Buffers Using CMOS-Compatible Nanoribbon Sensors, Nano Lett., 14, 5315, 10.1021/nl502366e

Huang, 2010, Bioavailability and Delivery of Nutraceuticals Using Nanotechnology, J. Food Sci., 75, R50, 10.1111/j.1750-3841.2009.01457.x

Inbaraj, 2015, Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products, J. Food Drug Anal., 24, 15, 10.1016/j.jfda.2015.05.001

Jampilek, J., Kos, J., and Kralova, K. (2019). Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. Nanomaterials, 9.

Mali, 2020, Nanotechnology a novel approach to enhance crop productivity, Biochem. Biophys. Rep., 24, 100821

Saifullah, 2019, Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review, Trends Food Sci. Technol., 86, 230, 10.1016/j.tifs.2019.02.030

Kumar, 2017, Nanosensors for food quality and safety assessment, Environ. Chem. Lett., 15, 165, 10.1007/s10311-017-0616-4

George, 2015, Cellulose nanocrystals: Synthesis, functional properties, and applications, Nanotechnol. Sci. Appl., 8, 45, 10.2147/NSA.S64386

Vong, 2019, An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves, Nat. Commun., 10, 5746, 10.1038/s41467-019-13758-2

Pateiro, M., Gómez, B., Munekata, P., Barba, F., Putnik, P., Kovačević, D., and Lorenzo, J. (2021). Nanoencapsulation of Promising Bioactive Compounds to Improve Their Absorption, Stability, Functionality and the Appearance of the Final Food Products. Molecules, 26.

Wang, 2017, The antimicrobial activity of nanoparticles: Present situation and prospects for the future, Int. J. Nanomed., 12, 1227, 10.2147/IJN.S121956

Sankar, 2010, Nanocochleate—A new approach in lipid drug delivery, Int. J. Pharm. Pharm. Sci., 2, 220

Sekhon, 2014, Nanotechnology in agri-food production: An overview, Nanotechnol. Sci. Appl., 7, 31, 10.2147/NSA.S39406

Prakash, 2019, Ap-plication of Nanoparticles in Food Preservation and Food Processing, J. Food Hyg. Saf., 34, 317, 10.13103/JFHS.2019.34.4.317

Ribeiro, 2014, Functional Films from Silica/Polymer Nanoparticles, Materials, 7, 3881, 10.3390/ma7053881

Hsu, C.-Y., Wang, P.-W., Alalaiwe, A., Lin, Z.-C., and Fang, J.-Y. (2019). Use of Lipid Nanocarriers to Improve Oral Delivery of Vitamins. Nutrients, 11.

Pakrashi, 2011, Cytotoxicity of Al2O3Nanoparticles at Low Exposure Levels to a Freshwater Bacterial Isolate, Chem. Res. Toxicol., 24, 1899, 10.1021/tx200244g

Park, 2015, Biodistribution and toxicity of spherical aluminum oxide nanoparticles, J. Appl. Toxicol., 36, 424, 10.1002/jat.3233

Minigalieva, I.A., Katsnelson, B.A., Privalova, L.I., Sutunkova, M.P., Gurvich, V.B., Shur, V.Y., Shishkina, E.V., Valamina, I.E., Makeyev, O.H., and Panov, V.G. (2018). Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors. Int. J. Mol. Sci., 19.

Asharani, 2010, Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos, Nanotoxicology, 5, 43, 10.3109/17435390.2010.489207

Tao, 2018, Antimicrobial activity and toxicity of gold nanoparticles: Research progress, challenges and prospects, Lett. Appl. Microbiol., 67, 537, 10.1111/lam.13082

Boisselier, 2009, Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev., 38, 1759, 10.1039/b806051g

Ahamed, 2010, Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells, Biochem. Biophys. Res. Commun., 396, 578, 10.1016/j.bbrc.2010.04.156

Fahmy, 2009, Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells, Toxicol. Vitro, 23, 1365, 10.1016/j.tiv.2009.08.005

Karlsson, 2009, Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size, Toxicol. Lett., 188, 112, 10.1016/j.toxlet.2009.03.014

Lei, 2008, Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity, Toxicol. Appl. Pharmacol., 232, 292, 10.1016/j.taap.2008.06.026

Seabra, 2012, Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles, J. Appl. Toxicol., 32, 867, 10.1002/jat.2780

Hadrup, 2020, Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: A review, Regul. Toxicol. Pharmacol., 115, 104690, 10.1016/j.yrtph.2020.104690

Seckler, 2014, Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues, J. Pharm. Sci., 103, 1931, 10.1002/jps.24001

Cao, 2018, A review of cardiovascular toxicity of TiO2, ZnO and Ag nanoparticles (NPs), BioMetals, 31, 457, 10.1007/s10534-018-0113-7

Kumar, 2011, Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli, Free Radic. Biol. Med., 51, 1872, 10.1016/j.freeradbiomed.2011.08.025

Subramaniam, 2018, Health hazards of nanoparticles: Understanding the toxicity mechanism of nanosized ZnO in cosmetic products, Drug Chem. Toxicol., 42, 84, 10.1080/01480545.2018.1491987

Singh, 2019, Zinc oxide nanoparticles impacts: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity, Toxicol. Mech. Methods, 29, 300, 10.1080/15376516.2018.1553221

Sun, 2013, Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models, Int. J. Nanomed., 8, 961, 10.2147/IJN.S39048

Sohaebuddin, 2010, Nanomaterial cytotoxicity is composition, size, and cell type dependent, Part. Fibre Toxicol., 7, 1, 10.1186/1743-8977-7-22

Raghunathan, 2013, Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity, Biomaterials, 34, 3559, 10.1016/j.biomaterials.2013.01.085

Morimoto, 2012, Inhalation Toxicity Assessment of Carbon-Based Nanoparticles, Acc. Chem. Res., 46, 770, 10.1021/ar200311b

Zhang, 2014, Toxicity and efficacy of carbon nanotubes and graphene: The utility of carbon-based nanoparticles in nanomedicine, Drug Metab. Rev., 46, 232, 10.3109/03602532.2014.883406

2017, Role of omics techniques in the toxicity testing of nanoparticles, J. Nanobiotechnol., 15, 1

Barhoum, A. (2022). Bacterial Cellulose Nanofibers. Handbook of Nanocelluloses, Springer.

Barhoum, A. (2021). Nanocellulose-Based Materials for Wastewater Treatment. Handbook of Nanocelluloses, Springer.