Review on Friction Stir Processed TIG and Friction Stir Welded Dissimilar Alloy Joints

Metals - Tập 10 Số 1 - Trang 142
Sipokazi Mabuwa1, Velaphi Msomi1
1Faculty of Engineering and the Built Environment, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa

Tóm tắt

There is an increase in reducing the weight of structures through the use of aluminium alloys in different industries like aerospace, automotive, etc. This growing interest will lead towards using dissimilar aluminium alloys which will require welding. Currently, tungsten inert gas welding and friction stir welding are the well-known techniques suitable for joining dissimilar aluminium alloys. The welding of dissimilar alloys has its own dynamics which impact on the quality of the weld. This then suggests that there should be a process which can be used to improve the welds of dissimilar alloys post their production. Friction stir processing is viewed as one of the techniques that could be used to improve the mechanical properties of a material. This paper reports on the status and the advancement of friction stir welding, tungsten inert gas welding and the friction stir processing technique. It further looks at the variation use of friction stir processing on tungsten inert gas and friction stir welded joints with the purpose of identifying the knowledge gap.

Từ khóa


Tài liệu tham khảo

Cam, 1998, Progress in joining of advanced materials, Int. Mater. Rev., 43, 1, 10.1179/imr.1998.43.1.1

Nicholas, E.D. (1998, January 5–10). Developments in the friction stir welding of metals. Proceedings of the 6th International Conference on Aluminium Alloys, Toyohashi, Japan.

Patel, V., Li, W., Wang, G., Wang, F., Vairis, A., and Niu, P. (2019). Friction stir welding of dissimilar aluminum alloy combinations: State-of-the-art. Metals, 9.

Sun, N. (2009). Friction Stir Processing of Aluminium Alloys. [Master’s Thesis, University of Kentucky].

Marczyk, J., Nosal, P., and Hebda, M. (2018, January 8–9). Effect of Friction Stir Processing on Microstructure and Microhardness of Al-TiC Composites. Proceedings of the Student’s Conference, Freiberg, Germany.

2018, Friction stir processing—State of the art, Arch. Civ. Mech. Eng., 18, 114, 10.1016/j.acme.2017.06.002

Chaudhari, R., Parekh, R., and Ingle, A. (2014, January 8–9). Reliability of Dissimilar Metal Joints Using Fusion Welding: A Review. Proceedings of the International Conference on Machine Learning, Electrical and Mechanical Engineering (ICMLEME’2014), Dubai, UAE.

Simar, 2013, Comparing similar and dissimilar friction stir welds of 2017–6005A aluminium alloys, Sci. Technol. Weld. Join., 15, 254, 10.1179/136217110X12665048207737

Dilip, 2010, Microstructural characterization of dissimilar friction stir welds between AA2219 and AA5083, Trans. Indian Inst. Met., 63, 757, 10.1007/s12666-010-0116-8

Morishige, 2008, Dissimilar welding of Al and Mg alloys by FSW, Mater. Trans., 49, 1129, 10.2320/matertrans.MC200768

Cavaliere, 2008, Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding, J. Mater. Process. Technol., 206, 249, 10.1016/j.jmatprotec.2007.12.036

Peng, G., Yan, Q., Hu, J., Chen, P., Chen, Z., and Zhang, T. (2019). Effect of forced air cooling on the microstructures, tensile strength, and hardness distribution of dissimilar friction stir welded AA5A06-AA6061 joints. Metals, 9.

Shah, 2019, Dissimilar friction stir welding of thick plate AA5052-AA6061 aluminum alloys: Effects of material positioning and tool eccentricity, Int. J. Adv. Manuf. Technol., 105, 889, 10.1007/s00170-019-04287-9

Giraud, 2016, Investigation into the dissimilar friction stir welding of AA7020-T651 and AA6060-T6, J. Mater. Process. Technol., 235, 220, 10.1016/j.jmatprotec.2016.04.020

Khodir, 2007, Dissimilar friction stir welded joints between 2024-T3 aluminum alloy and AZ31 magnesium alloy, Mater. Trans., 48, 2501, 10.2320/matertrans.MRA2007093

Rodriguez, 2015, Microstructure and mechanical properties of dissimilar friction stir welding of 6061-To-7050 aluminum alloys, Mater. Des., 83, 60, 10.1016/j.matdes.2015.05.074

Guo, 2014, Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters, Mater. Des., 56, 185, 10.1016/j.matdes.2013.10.082

Mofid, 2014, Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen, Int. J. Adv. Manuf. Technol., 71, 1493, 10.1007/s00170-013-5565-x

2018, Friction stir welding: Dissimilar aluminum alloys, World J. Eng. Technol., 6, 408, 10.4236/wjet.2018.62025

Cole, 2014, Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-T6 and 7075-T6, Int. J. Adv. Manuf. Technol., 71, 643, 10.1007/s00170-013-5485-9

Vivekanandan, 2012, The experimental analysis of friction stir welding on aluminium composites, Int. J. Metall. Eng., 1, 1

Li, 2012, Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding, Trans. Nonferrous Met. Soc. China, 22, 1298, 10.1016/S1003-6326(11)61318-6

Sepe, 2015, Crack growth behavior of welded stiffened panel, Proc. Eng., 109, 473, 10.1016/j.proeng.2015.06.251

Citarella, 2016, Hybrid technique to assess the fatigue performance of multiple cracked FSW joints, Eng. Fract. Mech., 62, 38, 10.1016/j.engfracmech.2016.05.005

Sheng, X., Li, K., Wu, W., Yang, W., Liu, Y., Zhao, Y., and He, G. (2019). Microstructure and mechanical properties of friction stir welded joint of an aluminum alloy sheet 6005A-T4. Metals, 9.

Li, Y., Gong, W., and Sun, D. (2019). Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welded 6082-T6 aluminum alloy. Metals, 9.

Ilangovan, 2015, Microstructure and tensile properties of friction stir welded dissimilar AA6061-AA5086 aluminium alloy joints, Trans. Nonferrous Met. Soc. China, 25, 1080, 10.1016/S1003-6326(15)63701-3

Ishak, 2015, Feasibility study on joining dissimilar aluminum alloys AA6061 and AA7075 by tungsten inert gas (TIG), J. Teknol., 75, 79

Borrisutthekul, 2010, Feasibility of using TIG welding in dissimilar metals between steel/aluminum alloy, Energy Res. J., 1, 82, 10.3844/erjsp.2010.82.86

Waleed, 2017, Effect of ER4047 filler rod on tungsten inert gas welding of AA5083-H111 and AA6061-T6 aluminium alloys, JCHPS, 7, 210

Sefika, 2013, Multi-response optimization using the Taguchi based grey relational analysis: A case study for dissimilar friction stir butt welding of AA6082-T6/AA5754-H111, Int. J. Adv. Manuf. Technol., 68, 795, 10.1007/s00170-012-4720-0

Subbaiah, K., Geetha, M., Sridhar, N., and Koteswara Rao, S.R. (2012, January 4–8). Comparison of Tungsten Inert Gas and Friction Stir Welding of AA 5083-H321 Aluminium Alloy Plates. Trends in Welding Research. Proceedings of the 9th International Conference, ASM International, Chicago, IL, USA.

Leitao, 2012, Analysis of high temperature plastic behavior and its relation with weld ability in friction stir welding for aluminum alloys AA5083-H111 and AA6082-T6, Mater. Des., 37, 402, 10.1016/j.matdes.2012.01.031

Menzemer, 2001, A study of fusion zone microstructures of arc-welded joints made from dissimilar aluminum alloys, J. Mater. Eng. Perform., 10, 173, 10.1361/105994901770345187

Palanivel, 2013, Optimization of process parameters to maximize ultimate tensile strength of friction stir welded dissimilar aluminum alloys using response surface methodology, J. Cent. South Univ., 20, 2929, 10.1007/s11771-013-1815-1

Chen, Q., Ge, H., Yang, C., Lin, S., and Fan, C. (2017). Study on pores in ultrasonic-assisted TIG weld of aluminum alloy. Metals, 7.

Wang, W., Cao, Z., Liu, K., Zhang, X., Zhou, K., and Ou, P. (2018). Fabrication and mechanical properties of tungsten inert gas welding ring welded joint of 7A05-T6/5A06-O dissimilar aluminum alloy. Materials, 11.

Narayanan, 2013, Influence of gas tungsten arc welding parameters in aluminium 5083 alloy, IJESIT, 2, 269

Mohan, P. (2014). Study the Effects of Welding Parameters on TIG Welding of Aluminum Plate. [Master’s Thesis, National Institute of Technology].

Baghel, 2018, Mechanical properties and microstructural characterization of automated pulse TIG welding of dissimilar aluminum alloy, IJEMS, 25, 147

KumarSingh, S., Tiwari, R.M., Kumar, A., Kumar, S., Murtaza, Q., and Kumar, S. (2018, January 29–30). Mechanical Properties and Microstructure of Al-5083 by TIG. Proceedings of the International Conference on Processing of Materials, Minerals and Energy, Ongole, India.

Sayer, 2011, Comparison of mechanical and microstructural behaviors of tungsten inert gas welded and friction stir welded dissimilar aluminum alloys AA 2014 and AA 5083, Kovove Mater., 49, 155, 10.4149/km_2011_2_155

Singh, G., Singh, F., and Singh, H. (2015). A Study of mechanical properties on TIG welding at different parameters with and without use of flux. IJTIR, 16.

Patil, 2016, Experimental investigation of hardness of FSW and TIG joints of aluminium alloys of AA7075 and AA6061, Frat. Integrità Strutt., 10, 325, 10.3221/IGF-ESIS.37.43

Kumara, 2007, Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminum alloy, Mater. Des., 28, 2080, 10.1016/j.matdes.2006.05.027

Hameed, A.M., Resan, K.K., and Eweed, K.M. (2015, January 13–19). Effect of Friction Stir Processing Parameters on the Dissimilar Aluminum Alloys. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA.

Karthikeyan, 2011, Relationship between process parameters and mechanical properties of friction stir processed AA6063-T6 aluminum alloy, Mater. Des., 32, 3085, 10.1016/j.matdes.2010.12.049

Hannard, 2017, Ductilization of aluminium alloy 6056 by friction stir processing, Acta Mater., 130, 121, 10.1016/j.actamat.2017.01.047

Mazaheri, 2011, A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing, J. Mater. Process. Technol., 211, 1614, 10.1016/j.jmatprotec.2011.04.015

Kalashnikova, T.A., Chumaevskii, A.V., Rubtsov, V.E., Ivanov, A.N., Alibatyro, A.A., and Kalashnikov, K.N. (2017, January 9–13). Structural Evolution of Multiple Friction Stir Processed AA2024. Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures (AMHS’17), Tomsk, Russia.

Hashim, 2015, Effect of friction stir processing on (2024-T3) aluminum alloy, IJIRSET, 4, 1822, 10.15680/IJIRSET.2015.0404003

Tsai, 2012, Improvement of mechanical properties of a cast Al-Si base alloy by friction stir processing, Mater. Lett., 80, 40, 10.1016/j.matlet.2012.04.073

Jana, 2010, Effect of friction stir processing on fatigue behavior of an investment cast Al–7Si–0.6 Mg alloy, Acta Mater., 58, 989, 10.1016/j.actamat.2009.10.015

Kurt, 2010, Surface modification of aluminium by friction stir processing, J. Mater. Process. Technol., 211, 313, 10.1016/j.jmatprotec.2010.09.020

John, 2019, Investigation of friction stir processing effect on AA 2014-T6, Mater. Manuf. Process., 34, 159, 10.1080/10426914.2018.1532577

Prakash, 2013, The Influences of the friction stir processing on the microstructure and hardness of AA6061 aluminium sheet metal, JMET, 1, 66

Sinhmar, S., Dwivedi, D.K., and Pancholi, V. (2014, January 30–31). Friction Stir Processing of AA 7039 Alloy. Proceedings of the International Conference on Production and Mechanical Engineering, Bangkok, Thailand.

Santella, 2005, Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356, Scr. Mater., 53, 201, 10.1016/j.scriptamat.2005.03.040

Kuncická, L., Král, P., Dvorák, J., and Kocich, R. (2019). Texture evolution in biocompatible Mg-Y-Re alloy after friction stir processing. Metals, 9.

Izadi, H., Nolting, A., Munro, C., and Gerlich, A.P. (2012, January 4–8). Effect of Friction Stir Processing Parameters on Microstructure and Mechanical Properties of AL 5059. Proceedings of the 9th International Conference on Trends in Welding Research, Chicago, IL, USA.

Ni, 2009, Enhancing the high-cycle fatigue strength of Mg–9Al–1Zn casting by friction stir processing, Scr. Mater., 61, 568, 10.1016/j.scriptamat.2009.05.023

Sakurada, 2002, Underwater Friction welding of 6061 aluminum alloy, JILM, 52, 2, 10.2464/jilm.52.2

Hofmann, 2007, Thermal history analysis of friction stir processed and submerged friction stir processed aluminum, MSEA, 465, 165, 10.1016/j.msea.2007.02.056

Zhang, 2011, Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints, Mater. Des., 32, 4402, 10.1016/j.matdes.2011.03.073

Darras, 2013, Submerged friction stir processing of AZ31 Magnesium alloy, Mater. Des., 47, 133, 10.1016/j.matdes.2012.12.026

Sabari, S.S. (2016). Evaluation of Performance of Friction Stir Welded AA2519-T87 Aluminium Alloy Joints. [Ph.D. Thesis, Annamalai University].

Soliman, 2010, Friction stir processing: An effective technique to refine grain structure and enhance ductility, Mater. Des., 31, 1231, 10.1016/j.matdes.2009.09.025

Akinlabi, 2014, Processing parameters influence on wear resistance behaviour of friction stir processed Al-TiC composites, Adv. Mater. Sci. Eng., 2014, 724590, 10.1155/2014/724590

Toma, 2015, The effect of the cutting depth of the tool friction stir process on the mechanical properties and microstructures of aluminium alloy 6061-T6, AJMA, 3, 33

Abrahams, 2019, Effect of friction stir process parameters on the mechanical properties of 5005-H34 and 7075-T651 aluminium alloys, Mater. Sci. Eng., 751, 363, 10.1016/j.msea.2019.02.065

Zhao, 2019, Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy, Mater. Sci. Eng., 751, 70, 10.1016/j.msea.2019.02.064

Rouzbehani, 2018, Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy, J. Mater. Process. Technol., 262, 239, 10.1016/j.jmatprotec.2018.06.033

Singh, 2017, Fabrication of AA-6063/Sic composite material by using friction stir processing, IJAR, 5, 1652, 10.21474/IJAR01/3993

Sun, 2019, Friction stir processing of aluminum alloy A206: Part II—Tensile and fatigue properties, Int. J. Met., 13, 244

Thakral, 2018, Experimental analysis of friction stir processing of TIG welded aluminium alloy 6061, IJIRST, 4, 51

Yadav, 2012, Effect of friction stir processing on microstructure and mechanical properties of aluminium, MSEA, 539, 85, 10.1016/j.msea.2012.01.055

Feng, 2013, Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219, Mater. Charact., 82, 97, 10.1016/j.matchar.2013.05.010

Singh, 2016, Effect of under surface cooling on tensile strength of friction stir processed aluminium alloy 6082, AJEAT, 5, 40, 10.51983/ajeat-2016.5.1.767

Nourbakhsh, 2017, Effect of submerged multi-pass friction stir process on the mechanical and microstructural properties of Al7075, J. Stress Anal., 2, 51

Mabuwa, 2019, Effect of friction stir processing on gas tungsten arc welded and friction stir welded 5083-H111 aluminium alloy joints, Adv. Mater. Sci. Eng., 2019, 3510236, 10.1155/2019/3510236

Dawood, 2014, Advantages of the Green Solid State FSW over the Conventional GMAW Process, Adv. Mater. Sci. Eng., 2014, 105713, 10.1155/2014/105713

Bevilacqua, 2017, Sustainability analysis of friction stir welding of AA5754 sheets, Procedia CIRP, 62, 529, 10.1016/j.procir.2016.06.081

Nandan, 2008, Recent advances in friction-stir welding—Process, weldment structure and properties, Prog. Mater. Sci., 53, 980, 10.1016/j.pmatsci.2008.05.001

Shukla, 2010, Comparative study of friction stir welding and tungsten inert gas welding process, IJST, 3, 667, 10.17485/ijst/2010/v3i6.17

Nicholas, E.D., and Kallee, S.W. (November, January 29). Friction stir welding-a decade on. Proceedings of the IIW Asian Pacific International Congress, Sydney, Australia.

Costa, 2014, Surface enhancement of cold work tool steels by friction stir processing with a pinless tool, Appl. Surf. Sci., 296, 214, 10.1016/j.apsusc.2014.01.094

Li, K., Liu, X., and Zhao, Y. (2019). Research status and prospect of friction stir processing technology. Coatings, 9.

Wang, 2017, Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing, Acta Mater., 131, 499, 10.1016/j.actamat.2017.03.079

Sun, 2008, Influence of process parameter on microstructure of AZ31 magnesium alloy in friction stir processing, Hot Work. Technol., 37, 99

Thompson, B., Doherty, K., Su, J., and Mishra, R. (2013). Nano-sized grain refinement using friction stir processing. Friction Stir Welding and Processing VII, Springer.

Xin, 2016, Microstructure and texture evolution of an Mg-Gd-Y-Nd-Zr alloy during friction stir processing, J. Alloy. Compd., 659, 51, 10.1016/j.jallcom.2015.11.034

Han, 2016, Influence of processing parameters on thermal field in Mg-Nd-Zn-Zr alloy during friction stir processing, Mater. Des., 94, 186, 10.1016/j.matdes.2016.01.044

Khodabakhshi, 2017, Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multi-step friction-stir processing, Mater. Sci. Eng. A, 698, 313, 10.1016/j.msea.2017.05.065

Msomi, V., Mbana, N., and Mabuwa, S. (2019). Microstructural analysis of the friction stir welded 1050-H14 and 5083-H111 aluminium alloys. Mater. Today Proc.

Raj, 2011, Study of friction stir processing (FSP) and high pressure torsion (HPT) and their effect on mechanical properties, Proc. Eng., 10, 2904, 10.1016/j.proeng.2011.04.482